

Tracing protostellar environments with H₂O and CO: from low to high mass with Herschel

Joseph Mottram

I. San José-García, A. Karska, L.E. Kristensen, E.F. van Dishoeck and the WISH and WILL survey teams

Motivating questions

- What physical component(s) do H₂O and CO trace and what are their properties?
- Can we use LM sources as scaled templates for HM sources?
- Does this extend to cluster or extragalactic scales?

The Data

WISH: Water In Star-forming regions with Herschel

- 425 hrs of Herschel time (van Dishoeck et al., 2011, PASP)
- HIFI spectroscopy & PACS spectral maps of H₂O, CO and related molecules

WILL: William Herschel Line Legacy

- OT2 follow-up to WISH-LM of a statistically selected sample (Mottram et al., in prep.)
- ~50 sources selected from Herschel and Spitzer GB surveys using the criteria:

Excellent data quality

Karska et al., 2014

Excellent data quality

Mottram et al., in prep. Low-mass protostars – simplest template of star formation

Multi-component H₂O line profiles

- H₂O line profiles are complex -> trace multiple kinematic components
- Dominated by broad component associated with outflows and shocks
- The FWHM is larger than for low-J CO

Multi-component CO rotational diagram

- CO rotational diagrams from PACS show a warm (~300K) mid-J and sometimes also a hot (~750K) high-J component
- Temperatures similar for all sources

Karska et al., 2013, 2014b see also Green et al., 2013, Manoj et al., 2013

Spatial extent of water

HH 211

- Water and low-J CO trace different spatial regions within the outflow
- Water limited to central PACS spaxel in bulk of sources; few show extended emission.

Origin of the emission

building on Kristensen et al., 2012, 2013, Karska et al., 2013 Cavity shock

- C-shock along outflow cavity wall (central H₂O, warm mid-J CO)
- Dominates H₂O integrated intensity
- T_{gas}~300 K
- Spot Shocks
 - J-shock internal to jet and at point of first impact on cavity wall (offset/EHV H₂O, hot high-J CO)

Water excitation

- Lines are optically thick but effectively thin
- Emitting region sizes are small, of order 10-200AU
- $n = 10^{5} 10^{8} \text{ cm}^{-3}$, $N = 10^{16} 10^{18} \text{ cm}^{-2}$
- Radiative pumping ruled out

Need for UV irradiation

- Good agreement

 with shock models
 for single species
 PACS ratios
- Poor fit for interspecies ratios e.g.
 CO/H₂O -> too much H₂O in models
- H₂O/CO 16-15 from HIFI finds X(H₂O)~10⁻⁵

From low to high mass – does it all just scale?

Line profiles over probed L range

- Profiles similar between Class 0, intermediate and high-mass WISH sources
- Still dominated by cavity-shock component

Line luminosities scales with L

- Integrated intensity of water and CO scale linearly with L_{bol}
- Warm PACS CO component also seen in HM sources with similar T_{rot}

San Jose-Garcia et al., 2013 & in prep., Karska et al., 2014 & in prep.

H₂O vs. ¹²CO

- The FWZI (and FWHM) of H₂O lines doesn't vary with L_{bol}
- They increase with L_{bol} for CO
- Therefore the relationship between H₂O and ¹²CO changes with L_{bol}
- Also seen when comparing line ratios of H₂O with ¹²CO J=10-9 and 16-15 as a function of velocity

H_2O vs. CO – explanation(s)

- Two scenarios to explain this:
 - 1: Higher UV in HM sources destroys water closer to the cavity but releases more water further in
 - 2: Higher turbulence caused by the outflow leads to mixing of material deeper into the cavity wall
- Taken together, outflows seem to scale with L_{bol}

San Jose-Garcia et al., in prep.

From the Milky Way to other Galaxies

Can we keep on scaling up?

Extragalactic data from Yang et al., 2013, van der Werf et al., 2010, Spinoglio et al., 2012, Kamenetzky et al. 2012; Meijerink et al. 2013

- H₂O and CO intensity seem to continue to scale with L_{bol} to extragalactic scales
- Combination of LM and HM sources in beam? San Jose-Garcia et al., 2013 & in prep., Kristensen & Bergin, in prep.

21

What about excitation?

- Extragalactic water line-ratios more similar to LM than HM over common energy range
- Hot CO from protostars in extragalactic sources too?

Conclusions

Conclusions

- Water and warm (~300K, mid-J) CO are dominated by the compact cavity shock in both LM and HM sources
- Integrated intensity scales linearly with L_{bol}
- Excitation of warm CO consistent between LM and HM, H₂O under investigation
- After accounting for details, LM can be scaled up to HM (at least for the outflow physics we are probing)
- LM and HM sources provide templates which may be able explain observed extragalactic emission

More details and papers can be found at http://www.strw.leidenuniv.nl/WISH/

Thank you for your attention.

Any questions?