A Complete Census of Dense Cores in Chamaeleon I
 Results from an ALMA Cycle 1 Survey

John Tobin, Leiden Observatory
Mike Dunham (CfA), Scott Schnee (NRAO), Stella Offner (UMass Amherst), Jaime Pineda (ETH), Héctor Arce (Yale), Tyler Bourke (SKA), Xuepeng Chen (PMO), James Di Francesco (HIA), Doug Johnstone (HIA), Daniel Price (Monash)

Multiplicity

Multiplicity is common in protostars, and declines with evolutionary stage

Solar-type field stars
(Raghavan et
al. 2010)
Origins of Multiplicity?

Turbulent Fragmentation

Offner et al. (2010)

$$
\begin{array}{r}
+\quad+ \\
\text { radiative transfer } \\
\text { RT } \\
\hline \text { I400 AU }
\end{array}
$$

Predictions of Simulations (Offiner et al. 2010): Radiative feedback promotes disk stability Turbulent fragmentation is the dominant channel for multiplicity Fragmentation begins in the starless phase

Turbulent Fragmentation

Schnee et al. (2010) - CARMA observations of 9 starless cores in Perseus, all undetected
Consistent with predictions of turbulent fragmentation
ALMA should be capable of detecting fragmenting starless cores

ALMA 3 mm Survey of Chamaeleon I

Cycle 1 observations of 73 starless and protostellar cores in Chamaeleon I (d = 150 pc)

- Complete population of cores selected from single-dish submm LABOCA survey
- Band 3 (3 mm) continuum + CO (1-0) single pointings
$\sim 3^{\prime \prime}$ resolution $\mathrm{rms}=0.1 \mathrm{mJy} / \mathrm{beam}$
$\sim 2 \times 10^{-3} \mathrm{M}_{\text {sun }}$

Detection Statistics

26 continuum detections 1 Class 0 / FHSC 6 Class I in 4 cores
(2 multiple, 1 new) 17 flat-spectrum / Class II 2 new

- All known Class 0/l detected
- One new Class I (02B), unresolved by Herschel
- New sources are not associated with cores extra-galactic?

Grayscale: ALMA 106 GHz Continuum Red Contours: Herschel 70 um continuum (GB Survey, Winston et al. 2012) Dunham et al. (in prep)

Starless Cores

73 LABOCA cores

- 1 Class 0 core
- 4 Class I cores
- 11 disk detections
- 1 disk non-detection

56 starless cores

Dunham et al. (in prep)

Simulated Starless Cores: Bonnor-Ebert Spheres

Generate 106 GHz images of Bonnor-Ebert spheres (RADMC-3D) Central density $=10^{4}-10^{9} \mathrm{~cm}^{-3}$
Heated externally by ISRF attenuated by $A_{V}=3$ Simulate ALMA Cycle 1 observations (same beam and rms)

Simulated Starless Cores: BE Spheres

Dunham et al. (in prep)
>3 sigma detections for $\mathrm{n}_{\text {central }}>=10^{8} \mathrm{~cm}^{-3}$

Simulated Starless Cores: MHD Simulations

Offner \& Arce (2014) + magnetic fields $M=4 M_{\text {sun, }} L \sim 0.065 \mathrm{pc}, \mathrm{n}=6 \times 10^{4} \mathrm{~cm}^{-3}$

Simulated Starless Cores: MHD Simulations

Offner \& Arce (2014) + magnetic fields $M=4 M_{\text {sun, }} L \sim 0.065 \mathrm{pc}, \mathrm{n}=6 \times 10^{4} \mathrm{~cm}^{-3}$

Simulated Starless Cores: MHD Simulations

56 Undetected Starless Cores: Implications

Lower limit to mean central density of the 56 starless cores:

$$
<n_{\text {central }}>=1.4 \times 10^{5} \mathrm{~cm}^{-3}
$$

(M and R from peak mass per beam)
Fragmenting starless cores should be detectable for:

$$
\mathrm{n}_{\text {central }}>3 \times 10^{7} \mathrm{~cm}^{-3}
$$

Assume cores evolve on free-fall timescale ($\mathrm{t}_{\mathrm{ff}} \sim \mathrm{n}^{[-1 / 2]}$)
Assume star formation is continuous
Expected number of detections $=56$ * $(3 \mathrm{~d} 7 / 1.4 \mathrm{~d} 5)^{-1 / 2}$

Should detect ~ 4 starless cores

56 Undetected Starless Cores: Implications

Assumption that all cores evolve on free-fall timescale is bad? Lifetime / Free-fall time not constant, higher at lower n? Maybe, although little evidence either way at $\mathrm{n}>10^{5} \mathrm{~cm}^{-3}$

56 Undetected Starless Cores: Implications

Assumption that star formation is continuous is bad?
Most starless cores aren't going to form stars? Is star formation ending in Cham I?

$$
N_{\text {protostar }} / N_{\text {pre-main sequence }}=0.045
$$

Mean of all GB clouds $=0.09$

Summary

Simulations predict turbulent fragmentation in the starless phase is the dominant channel for the formation of multiple systems

Fragmenting starless cores should be detectable w/ALMA cycle 1 observations
None detected in sample of 56 starless cores in Chamaeleon I
~ 4 should be detected if star formation is continuous and starless cores evolve on free-fall timescale

Star formation may be ending or pausing in Chamaeleon I Starless cores may spend >> free-fall timescale at low densities Simulation may not be applicable to Chamaeleon I cores

No new protostars or candidate first cores despite sufficient sensitivity Spitzer+Herschel census of protostars is complete in Chamaeleon U

