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Multiplicity 

Multiplicity is common 
in protostars, and 

declines with 
evolutionary stage 

Tobin et al. (in prep) 

T Tauri stars 
(Patience et 
al. 2002) 

Solar-type 
field stars 
(Raghavan et 
al. 2010) 

B-array 
resolution 

A-array 
resolution 

Origins of Multiplicity? 



Turbulent Fragmentation 
Offner et al. (2010) 

radiative transfer no radiative transfer 

Predictions of Simulations (Offner et al. 2010): 
Radiative feedback promotes disk stability 

Turbulent fragmentation is the dominant channel for multiplicity 
Fragmentation begins in the starless phase 



Turbulent Fragmentation 
Schnee et al. (2010) - CARMA observations of 9  

starless cores in Perseus, all undetected 
Consistent with predictions of turbulent fragmentation 

ALMA should be capable of detecting fragmenting starless cores 

Offner et al. (2012); see also Mairs et al. (2014) 



ALMA 3 mm Survey of Chamaeleon I 

Belloche et al. (2011) 

•  Cycle 1 observations 
of 73 starless and 
protostellar cores in 
Chamaeleon I 
(d = 150 pc) 

•  Complete population 
of cores selected from 
single-dish submm 
LABOCA survey 

•  Band 3 (3 mm) 
continuum + CO (1-0) 
single pointings 
~3” resolution 
rms = 0.1  mJy/beam 
       ~ 2 x 10-3 Msun 



Detection Statistics 

•  26 continuum detections 
1 Class 0 / FHSC 
6 Class I in 4 cores 

 (2 multiple, 1 new) 
17 flat-spectrum / Class II 
2 new 

•  All known Class 0/I 
detected 

•  One new Class I (02B), 
unresolved by Herschel 

•  New sources are not 
associated with cores 

 extra-galactic? 

Grayscale: ALMA 106 GHz Continuum 
Red Contours: Herschel 70 um continuum 
(GB Survey, Winston et al. 2012) 
Dunham et al. (in prep) 
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   73  LABOCA cores 
–   1  Class 0 core 
–   4  Class I cores 
– 11  disk detections 
–   1  disk non-detection 
    
 

 
   56  starless cores 
 

Starless Cores 

Dunham et al. (in prep) 

60” = 9000 AU 



Simulated Starless Cores: 
Bonnor-Ebert Spheres 

Generate 106 GHz images of Bonnor-Ebert spheres (RADMC-3D) 
Central density = 104 – 109 cm-3 

Heated externally by ISRF attenuated by AV = 3 
Simulate ALMA Cycle 1 observations (same beam and rms) 



Simulated Starless Cores: BE Spheres 

>3 sigma detections for ncentral >= 108 cm-3 
Dunham et al. (in prep) 



Offner & Arce (2014) + magnetic fields 
M = 4 Msun, L ~ 0.065 pc, n = 6 x 104 cm-3 
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Simulated Starless Cores: MHD Simulations 



Offner & Arce (2014) + magnetic fields 
M = 4 Msun, L ~ 0.065 pc, n = 6 x 104 cm-3 
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Simulated Starless Cores: MHD Simulations 



Simulated Starless Cores: MHD Simulations 

Predictions: 
 

starless cores detected 
for n > 3 x 107 cm-3 

 

Fragmentation and 
filamentary structure 
detectable with these 
ALMA observations 

 
First cores detectable 

Dunham et al. (in prep) 

Sink inserted 
First hydrostatic core forms 

Simulated ALMA cycle 1 observations 
Same resolution and sensitivity  



Lower limit to mean central density of the 56 starless cores: 
<ncentral> = 1.4 x 105 cm-3 

(M and R from peak mass per beam) 
 

Fragmenting starless cores should be detectable for: 
ncentral > 3 x 107 cm-3 

 

Assume cores evolve on free-fall timescale (tff ~ n[-1/2]) 
Assume star formation is continuous 

Expected number of detections = 56 * (3d7/1.4d5)-1/2 
 

Should detect ~ 4 starless cores 
 

Why are no starless cores detected? 

56 Undetected Starless Cores: Implications 



56 Undetected Starless Cores: Implications 

Ward-Thompson et al. (2007), PPV Review 

Assumption that all cores evolve on free-fall timescale is bad? 
Lifetime / Free-fall time not constant, higher at lower n? 

Maybe, although little evidence either way at n > 105 cm-3 



56 Undetected Starless Cores: Implications 

Assumption that star formation is continuous is bad? 
Most starless cores aren’t going to form stars? 

Is star formation ending in Cham I? 
Nprotostar / Npre-main sequence = 0.045 

Mean of all GB clouds = 0.09 

Protostars 

Starless cores 

Unstable 
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Summary 

Simulations predict turbulent fragmentation in the starless phase  
is the dominant channel for the formation of multiple systems 

 
Fragmenting starless cores should be detectable w/ALMA cycle 1 observations 

 
None detected in sample of 56 starless cores in Chamaeleon I 

~4 should be detected if star formation is continuous  
and starless cores evolve on free-fall timescale 

 
Star formation may be ending or pausing in Chamaeleon I 

Starless cores may spend >> free-fall timescale at low densities 
Simulation may not be applicable to Chamaeleon I cores 

 
No new protostars or candidate first cores despite sufficient sensitivity 
Spitzer+Herschel census of protostars is complete in Chamaeleon U 


