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We want to model the SFR to understand the formation and 
evolution of galaxies. So we study the fragmentation of 
large ISM regions.  
!
We may refer to them as ‘molecular-clouds’, in the context 
of disk galaxies, but we really mean any region of the cold 
ISM between 1 and 100 pc. 
!
Could even be much larger scale at high-z (e.g. a big chunk 
of a protogalaxy), when the turbulence is driven by mergers 
or cold accretion. 
!
So the approach is general; ‘molecular clouds’ are just ideal 
sites to test the theory.



Disk galaxies consume their molecular gas in ∼1 Gyr. 
On all scales: SFR ≈ 0.02 M/tff 

!
Why is gravity so inefficient?

Bigiel et al. (2011)



Because the ISM is turbulent.



First Galaxies 
!

Supersonic turbulence from cold accretion and streaming velocities

Atomic cooling halo at z≃10 
(Greif et al. 2008) 

150 kpc



Column density in Taurus 
(Goldsmith et al. 2008)

Giant Molecular Clouds !
Supersonic turbulence from SN explosions

10 pc



Supersonic Turbulence in GMCs 
!

Reynolds number: Re = UL / ν ∼108 
Sonic Mach number: ℳs = σu / cs ∼ 20



The turbulence can prevent the gravitational collapse 
But the turbulence also creates density enhancements  
Gravity dominates in density peaks —> star formation 

The turbulent energy is dominant on all but the largest scales. 
!
Energies per unit mass:        Ek ∼ L      Eg ∼ ρ L2 ∼ L2 



X projection                                       y projection

1 pc

Evolution during 3.2 Myr, from 1 to 1,300 stars
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The SFR from Turbulent Fragmentation 
!

Take advantage of the universal statics of supersonic turbulence (density 
PDF and power spectrum, velocity scaling). 

!
Define a critical density for star formation, based on the ratio of the sonic 
scale and the Jeans length. 
!
Expressed the SFR as the integral of the PDF above the critical density, 
divided by the local free-fall time. 


!
(Krumholz and McKee 2005; Padoan and Nordlund 2011; Chabrier and Hennebelle 
2011; Federrath and Klessen 2012; Hopkins 2013) 



Assuming the turbulence statistics are stationary,  
let’s consider a snapshot in time:

Let’s define a critical density above which the density 
fluctuations exceed the local Jeans mass. 

critical density

The peaks above the critical density collapse in a free-fall time, 
so the SFR is given by the mass fraction above the critical 
density, divided by the free-fall time.



The Critical Density 
!
The statistics of the density field (PDF and power spectrum) of supersonic 
turbulence have been determined with numerical simulations. They are 
universal and depend mainly on the rms Mach number (also on the magnetic 
field strength and the compressibility).  
!
So we can scan the density field and identify all the density peaks that are 
gravitationally unstable, as in the Press-Schechter (Chabrier and Hennebelle 
2011) or the excursion-set (Hopkins 2013) formalisms. 
!
More intuitively, we can define the critical density as that of the critical 
Bonnor-Ebert sphere confined by the external turbulent pressure (Padoan and 
Nordlund 2011, related to, but different from Krumholz and McKee 2005): 
!
!
!
!
Assuming a Larson line width-size relation, the expression simplifies into a 
constant, dependent only on the mean temperature (Padoan et al. 2014):

2 Padoan and Nordlund

which anticipates the result that the mass fraction with
density above ⇢cr,HD (and hence the SFR), must have
a rather weak Mach number dependence (despite the
strong dependence of ⇢cr,HD on MS,0), and must increase
with decreasing ↵vir (weaker turbulence relative to grav-
ity).
In numerical simulations, the integral scale of the tur-

bulence is somewhat smaller than the system size (✓ < 1).
For example, in our simulations of supersonic turbulence
driven in the range of wavenumbers 1  k  2 (k = 1
corresponds to the box size), ✓ ⇡ 0.35 (including a cor-
rection factor discussed in ?). We adopt this value of ✓
when we compare the models with the simulations in §7.
If star-forming regions are driven on very large scales,
for example by the expansion of supernova remnants
(?????), the turbulence integral scale could be much
larger than the size of individual star-forming regions.
However, in our model ✓L0 is the characteristic scale of
regions of compression with velocity of order the flow rms
velocity, v0, with v0 measured within the region of size
L0. We therefore adopt the same value of ✓ = 0.35 as
estimated in the simulations. With ✓ = 0.35, the critical
number density is

ncr,HD/n0 = 0.547↵vir M
2
S,0. (11)

Adopting characteristic parameters of molecular clouds
on a scale of 10 pc, ↵vir ⇡ 1.6, n0 ⇡ 200 cm�3, and
MS,0 ⇡ 20, we get a characteristic number density of
nHD ⇡ 2.0 ⇥ 104 cm�3 from equation (4), reasonable
for prestellar cores, and a factor of 3.5 below the critical
number density, ncr,HD ⇡ 350.1n0 ⇡ 7.0⇥104 cm�3. The
critical overdensity factor of 350.1 is somewhat larger
than the value of 275 derived from equation (27) of ?,
using the same values of ↵vir and MS,0 (notice that their
Mach number is 1D, so a factor of 31/2 smaller than ours)
and assuming �

x

= 1.12 for their numerical coe�cient
(their best fit to numerical simulations).

2. CRITICAL DENSITY IN MHD TURBULENCE

We now consider the magneto-hydrodynamic (MHD)
case. Including both thermal and magnetic pressures,
and using v0/2 for the shock velocity, like in equation
(3), the pressure balance condition for MHD shocks is:

⇢MHD(c
2
S + v

2
A/2) = ⇢0(v0/2)

2
, (12)

where vA is the Alfvén velocity in the postshock gas de-
fined by the postshock magnetic field perpendicular to
the direction of compression. Because the field is am-
plified only in the direction perpendicular to the com-
pression, the postshock perpendicular field is compa-
rable to the total postshock field1, and we can write,
vA ⇡ B/(4⇡⇢)1/2, where B is the postshock magnetic
field and ⇢ the postshock gas density. The characteristic

1 For the magnetic field strength in the postshock gas we can
write B2

? = B2 � B2
k = B2 � B2

0,k, where the second equality is

from the fact that the component parallel to the direction of the
compression is not amplified. If we take an average, assuming a
random orientation of the magnetic field relative to the direction of
compression, we get hB2

?i = hB2i�B3
0/3, and hence hB2

?i/hB2i =
1 � (B2

0/hB2i)/3. Thus, on the average, the relative error in � as
a result of assuming B = B? is (B2

0/hB2i)/3, which is typically of
order 1% or less.

gas density and thickness of postshock layers are thus
given by:

⇢MHD = ⇢0(M
2
S,0/4)

�
1 + �

�1
��1

, (13)

�MHD = (✓L0)(M
2
S,0/4)

�1
�
1 + �

�1
�
, (14)

where we have introduced the ratio of gas to magnetic
pressure in the postshock gas, � = 2 c2S/v

2
A. In the limit

of � ! 1, these expressions reduce to the corresponding
HD ones, given by equations (4) and (5). The value of
�MHD is not scale independent. Its scale dependence is
at the heart of the relation between the exponent of the
Salpeter stellar IMF and the turbulent velocity power
spectrum, in the IMF model of Padoan and Nordlund
(2002). However, we can still define a characteristic
thickness, and hence a characteristic critical density, as in
the HD case, because the average postshock Alfvén veloc-
ity, vA (and the corresponding postshock �), is only very
weakly dependent on density. In numerical simulations
of supersonic and super-Alfvénic turbulence, it is found
that, although vA has a very large scatter for any given
density, its mean value is nearly density independent,
corresponding to a mean relation approaching B / ⇢

1/2

for a very weak mean magnetic field (?). In the specific
MHD simulation used in this work, the mean value of
vA is almost exactly constant for any density ⇢ & 2⇢0
(see Figure ??). Zeeman splitting measurements of the
magnetic field strength in molecular cloud cores are also
consistent with an average value of vA nearly indepen-
dent of density (?).
Like in the HD case, we define the critical density as the

density above which a uniform sphere of radius �MHD/2
is gravitationally unstable, assuming that variations in
the thickness around �MHD are not strongly correlated
with the density variations. To account for both thermal
and magnetic support, we adopt the approximation of
the critical mass for collapse, Mcr, introduced by ?,

Mcr ⇡ MBE +M

�

, (15)

where M

�

is the magnetic critical mass for a sphere of
radius R, mean density equal to the postshock density ⇢,
and constant mass-to-flux ratio,

M

�

= 0.17⇡R2
B/G

1/2 = 0.387v3A/(G
3/2

⇢

1/2) (16)

where the numerical coe�cient 0.17 is from ? (see also
? for the case of an infinite sheet, and ? for a discussion
of ellipsoidal clouds and other geometries). The critical
density is defined by the condition,

MMHD(⇢cr,MHD) = MBE(⇢cr,MHD)+M

�

(⇢cr,MHD), (17)

where MMHD(⇢) = (4/3)⇡(�MHD/2)3⇢. Equation (17)
results in the following expression for the critical density
as a function of the three non-dimensional parameters,
↵vir, MS,0, and �:

⇢cr

⇢0
/ f(�)↵vir M

2
S (18)

which is smaller than ⇢cr,HD for any value of �, and re-
duces to the expression for ⇢cr,HD given by equation (8),
in the limit of � ! 1. The relative ratio of character-
istic to critical density in MHD and HD is given by the
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as a function of the three non-dimensional parameters,
↵vir, MS,0, and �:

⇢cr

⇢0
/ f(�)↵vir M

2
S (18)

nH,cr ⇡ (5� 10)⇥ 104cm�3 (T/10K)�1 (19)

which is smaller than ⇢cr,HD for any value of �, and
reduces to the expression for ⇢cr,HD given by equation



The Density PDF and the SFR 
!
We know the density field of supersonic isothermal turbulence follows a universal PDF 
that is a Log-Normal and depends only on the rms Mach number of the turbulence, ℳS: 
!
!
!
(Padoan and Nordlund 2011; Molina et al. 2011)
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first show that the dependence of �HD on MS,0 can be
obtained with a simple derivation, and we then apply the
same derivation to the MHD case.
Let’s consider a cubic box of size L0 swept by a single

compression of sonic Mach number MS,0 in one direction
and therefore accumulating all the mass in a postshock
layer of size L0 and density and thickness given by equa-
tions (4) and (5) respectively, with ✓ = 1. The standard
deviation of the density, �

⇢

, is given by

�

2
⇢

=
1

V

Z

V

(⇢� ⇢0)
2
dV (25)

where V is the volume, and the integral is over the whole
volume. In our simple model, the density is either zero
outside of the layer, or ⇢ = ⇢HD � ⇢0 inside the layer.
The integral is therefore approximately equal to ⇢

2
HD

times the volume of the layer, Vlayer:

�

2
⇢

⇡

1

V

(⇢2HDVlayer) =
�HDL

2
0

L

3
0

⇢

2
HD = ⇢

2
0M

2
S,0/4 (26)

where we have used equations (4) and (5) in the last
equality. This result is equivalent to equation (23) that
was derived from numerical simulations of supersonic
turbulence (??), and was recently confirmed by ?, based
on extinction maps of the Taurus molecular cloud. Fol-
lowing the same derivation in the MHD case we obtain:

�

x,MHD ⇡ (1 + �

�1)�1/2
MS,0/2, (27)

�

2
⇡ ln[1 + b

2
M

2
S �/(� + 1)] (28)

Based on equation (27), this value of � gives

�

x,MHD ⇡ 0.53MS,0/2 ⇡ 0.53�
x,HD (29)

We then speculate that � becomes independent of �0, as
�0 is increased, as soon as the postshock magnetic pres-
sure becomes important, because if it were not important
there would not be a significant alignement of flow veloc-
ity and magnetic field in regions of compression. Based
on the simple approximations leading to equation (20),
the postshock magnetic pressure is of the order of the
postshock thermal pressure, or larger, if MA,0 &

p

2�0.
This condition is satisfied by the three simulations of ?.
In summary, we make the ansatz that the critical den-

sity and the standard deviation of the density pdf are
given by the equations (18) and (27) respectively, where
� ⇡ 0.39 if MA,0 &

p

2�0, which covers all reasonable
values of magnetic field strengths and Mach numbers in
molecular clouds. If MA,0 <

p

2�0, then � ! 1 as
�0 ! 1, and both equations reduce to their correspond-
ing non-magnetized forms, given by equations (8) and
(23) respectively.

4. STAR FORMATION RATE

Assuming that a fraction ✏ of the mass fraction above
the critical density is turned into stars in a free-fall time
of the critical density, ⌧↵,cr = (3⇡/(32G⇢cr,MHD))1/2, the
star formation rate per free-fall time (the mass fraction

turned into stars in a free-fall time) is given by2:

SFR↵ = ✏

⌧↵,0

⌧↵,cr

Z 1

xcr

x pMHD(x) dx

= ✏

x

1/2
cr

2

✓
1 + erf


�

2
� 2 ln (xcr)

23/2 �

�◆
(30)

where ⌧↵,0 = (3⇡/(32G⇢0))1/2 is the free-fall time of the
mean density, xcr = ⇢cr,MHD/⇢0 given by equation (18),
� = �MHD given by equation (28), and the expression is
valid also in the limit of � ! 1.
? have argued that the value of SFR↵ is approxi-

mately the same in very di↵erent star forming environ-
ments. If so, the choice of expressing the SFR with
a time unit equal to the free-fall time, introduced in
?, is useful when comparing with observational esti-
mates of the SFR. However, if star forming clouds on all
scales were mostly transient structures, surviving only
a few local dynamical times in the turbulent flow that
formed them, observational estimates of the star forma-
tion e�ciency (rather than the SFR) could be compared
directly with the predicted SFR per dynamical time,
SFRdyn = SFR↵ ⌧dyn/⌧↵,0, where ⌧dyn = R/�v,3D, and
R is the cloud radius. With this definition of the dy-
namical time as a crossing time, SFRdyn decreases with

increasing ↵vir faster than SFR↵ , SFRdyn / ↵

�1/2
vir SFR↵ .

? has criticized the evidence presented by ?, in support
of his previous suggestion that the process of star for-
mation lasts approximately 1–2 dynamical times on all
scales (?). However, he defines the dynamical time as
1/(G⇢)1/2 = 0.54⌧↵,0, assuming that the cloud internal
velocity dispersion is of the order of the virial velocity,
which implies SFRdyn = 0.54 SFR↵ .
In §7, we show that the star formation rate in our HD

simulations achieves this predicted maximum value, for
any value of ↵vir we have tested (✏ = 1, independent of
↵vir), while in the MHD simulations only approximately
half of the magnetized gas above the critical density
seems to be in collapsing regions (✏ = 0.5, independent
of ↵vir). Because the simulations are reproduced by the
model with ✏ independent of ↵vir, the timescale ⌧↵ in ? is
not a good choice, as it would require their coe�cient �t

to vary with ↵vir (the relation ⌧↵,0/⌧↵,cr = x

1/2
cr ⇠ ↵

1/2
vir ,

shows that our model predicts a shallower dependence of
SFR↵ on ↵vir than in ?)
Figure ?? shows the result of equation (30) as a func-

tion of the virial parameter, for three values of the sonic
Mach number, MS,0 = 4.5, 9, and 18, in the MHD case,
� = 0.39, and in the HD case (� = 1). We have as-
sumed a value of ✓ = 0.35, as discussed in §2. In the
HD case (dashed lines) we have assumed ✏ = 1, while the
curves for the MHD case (solid lines) are computed for
✏ = 0.5. This choice of ✏ is motivated by the numerical
results presented in §7.

5. SFR IN SIMULATIONS OF DRIVEN MHD TURBULENCE

In the MHD simulation, the initial magnetic field is
such that the initial value of the ratio of gas to mag-

2 The integral in equation (30) is solved assuming that the crit-
ical density is not strongly correlated with the local value of the
density, or, equivalently, that the actual postshock thickness is not
strongly correlated with the postshock density.
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following function of �:

⇢MHD/⇢cr,MHD

⇢HD/⇢cr,HD
=

(1 + �

�1)

(1 + 0.925�� 3
2 )

2
3

, (19)

This ratio is slightly larger than unity for any value of �
(with a maximum of ⇡ 1.3 at � ⇡ 0.86), suggesting that
star formation should be slightly more likely in MHD
turbulence than in the HD case. However, due to the
less broad gas density pdf in the MHD case (see the next
section), the net result is instead a lower SFR in MHD
than in HD.
We have verified that the average value of � is nearly

independent of density in the MHD simulation used to
generate the initial condition for the MHD star-formation
simulations described in §6. In that simulation, the rms
sonic Mach number is MS,0 ⇡ 9 and the mean Alfvén
velocity vA,0 = 0.3 cS, computed with the mean density
and mean magnetic field. However, the rms magnetic
field is amplified by the turbulence, so the actual Alfvén
velocity should be computed as the local absolute value
of B divided by the local value of the density, which gives,
vA = h|B|/(4⇡⇢)1/2i = 2.1 cS, if averaged over all regions
with density larger than twice the mean (the Alfvén ve-
locity introduced in eq. (??) is measured in the postshock
gas, so it should be estimated as an average in over-dense
regions). Figure ?? shows the mean Alfvén velocity as a
function of the gas density in the snapshot used as the
initial condition for the MHD star-formation simulations
(see § 6). The Alfvén velocity is almost exactly constant
at densities above the mean.
In numerical simulations of super-Alfvénic turbulence,

the rms magnetic field is the result of the amplification
of some weak initial field by compressions and, possi-
bly, by a turbulent dynamo. These simulations typically
start from an initially uniform field, B0, which is also
the conserved mean magnetic field. It would be useful
to relate our postshock � to the ratio of gas to mag-
netic pressure computed with the mean magnetic field,
B0, and the mean gas density, ⇢0, �0 = 2 c2S/v

2
A,0, where

v

2
A,0 = B

2
0/(4⇡⇢0). An approximate relation for the de-

pendence of � on �0 and MS,0 can be derived based on
flux freezing, on the simplified MHD shock jump con-
ditions without thermal pressure (where we assume the
characteristic shock velocity is v0/2, as in equations (??)
and (??)), and neglecting dynamical alignement of flow
velocity and magnetic field:

� ⇡ b�

1/2
0 M

�1
S,0, (20)

With the MHD simulation of this work, we derive b =
0.22 when � is computed from the mean squared value of
vA averaged over the whole computational box (not lim-
ited to over-dense regions). We find that equation (??)
is a very good approximation also for the three 1, 0243

simulations of ?, where MS,0 ⇡ 10, and �0 = 0.2, 2, and
20 (it overestimates � by approximately 20% for �0 = 0.2
and 2.0, and underestimates it by approximately 2% for
�0 = 20). However, if � is computed from the mean
squared vA averaged above a certain density, we find
that, as we increase the value of that density thresh-
old, the value of � becomes gradually independent of �0.
For densities larger than 50 times the mean, for example,
all three simulations yields � ⇡ 1. This can be under-

stood as due to the tendency of the strongest density
enhancements to originate from compressions along the
magnetic field direction. This tendency becomes stronger
for decreasing values of MA,0, or, at constant MS,0, for
decreasing values of �0, as documented by the increased
alignement of flow velocity and magnetic field (?).

3. GAS DENSITY PDF

We can estimate the gas mass fraction that is turned
into stars by computing the mass fraction above the
critical density, as in ?. For given values of ↵vir, MS,0,
and � (or �0), the critical density is fixed, and the mass
fraction above the critical density is determined by the
density pdf. In the HD case, the density pdf is known to
be Log-Normal, with a standard deviation depending on
the rms Mach number. Following the numerical results
of ? for the Mach number dependence, the pdf is given
by:

p(x)dx =
x

�1

(2⇡�2)1/2
exp


�

(lnx+ �

2
/2)2

2�2

�
dx (21)

and the standard deviation, �, is given by
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Equation (??) for the standard deviation of the logarithm
of the overdensity, lnx, implies a simple expression for the
standard deviation, �

x,HD, of the overdensity, x,

�

x,HD ⇡ MS,0/2 (23)

In the MHD case the density pdf may deviate from
the Log-Normal and it may depend on both the sonic
and the Alfvénic Mach numbers. ? have shown that
the density pdf in supersonic MHD simulations with a
strong field, corresponding to a mean value of �0 = 0.02,
is very similar to the density pdf in the HD case. Assum-
ing a Log-Normal pdf, the averaged results given in their
Table 1 correspond to the relation �

x,MHD ⇡ CMS,0/2,
with C ⇡ 0.8 at MS,0 < 4, and C decreasing with in-
creasing Mach number for MS,0 > 4. In their largest
Mach number run they find C ⇡ 0.66 with MS,0 ⇡ 6.7,
not far from the value of C ⇡ 0.53 derived below (see
equation (??)) from our MHD run with an even larger
Mach number, MS,0 ⇡ 9. In the absence of a detailed nu-
merical study, including di↵erent values of �0 and large
values of MS,0, here we derive a simple model for the
density pdf in the MHD case, based on arguments in-
spired by the HD case. We assume that the pdf can be
approximated by a Log-Normal also in the MHD case,
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at least in the super-Alfvénic regime that we think is rel-
evant for molecular clouds (Padoan and Nordlund 1999;
Lunttila et al. 2008,2009). This may not be a good ap-
proximation for the low density tail of the pdf, but for
the present purpose we are primarily interested in the
high density tail. To derive an expression for �MHD, we
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the present purpose we are primarily interested in the
high density tail. To derive an expression for �MHD, we
first show that the dependence of �HD on MS,0 can be
obtained with a simple derivation, and we then apply the
same derivation to the MHD case.
Let’s consider a cubic box of size L0 swept by a single

compression of sonic Mach number MS,0 in one direction
and therefore accumulating all the mass in a postshock
layer of size L0 and density and thickness given by equa-
tions (4) and (5) respectively, with ✓ = 1. The standard
deviation of the density, �

⇢

, is given by

�

2
⇢

=
1

V

Z

V

(⇢� ⇢0)
2
dV (26)

where V is the volume, and the integral is over the whole
volume. In our simple model, the density is either zero
outside of the layer, or ⇢ = ⇢HD � ⇢0 inside the layer.
The integral is therefore approximately equal to ⇢

2
HD

times the volume of the layer, Vlayer:
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where we have used equations (4) and (5) in the last
equality. This result is equivalent to equation (24) that
was derived from numerical simulations of supersonic
turbulence (??), and was recently confirmed by ?, based
on extinction maps of the Taurus molecular cloud. Fol-
lowing the same derivation in the MHD case we obtain:

�
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�1)�1/2
MS,0/2, (28)
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Based on equation (28), this value of � gives

�

x,MHD ⇡ 0.53MS,0/2 ⇡ 0.53�
x,HD (30)

We then speculate that � becomes independent of �0, as
�0 is increased, as soon as the postshock magnetic pres-
sure becomes important, because if it were not important
there would not be a significant alignement of flow veloc-
ity and magnetic field in regions of compression. Based
on the simple approximations leading to equation (21),
the postshock magnetic pressure is of the order of the
postshock thermal pressure, or larger, if MA,0 &

p

2�0.
This condition is satisfied by the three simulations of ?.
In summary, we make the ansatz that the critical den-

sity and the standard deviation of the density pdf are
given by the equations (18) and (28) respectively, where
� ⇡ 0.39 if MA,0 &

p

2�0, which covers all reasonable
values of magnetic field strengths and Mach numbers in
molecular clouds. If MA,0 <

p

2�0, then � ! 1 as
�0 ! 1, and both equations reduce to their correspond-
ing non-magnetized forms, given by equations (8) and
(24) respectively.

4. STAR FORMATION RATE

Assuming that a fraction ✏ of the mass fraction above
the critical density is turned into stars in a free-fall time
of the critical density, ⌧↵,cr = (3⇡/(32G⇢cr,MHD))1/2, the
star formation rate per free-fall time (the mass fraction

turned into stars in a free-fall time) is given by2:
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where ⌧↵,0 = (3⇡/(32G⇢0))1/2 is the free-fall time of the
mean density, xcr = ⇢cr,MHD/⇢0 given by equation (18),
� = �MHD given by equation (29), and the expression is
valid also in the limit of � ! 1.
? have argued that the value of SFR↵ is approxi-

mately the same in very di↵erent star forming environ-
ments. If so, the choice of expressing the SFR with
a time unit equal to the free-fall time, introduced in
?, is useful when comparing with observational esti-
mates of the SFR. However, if star forming clouds on all
scales were mostly transient structures, surviving only
a few local dynamical times in the turbulent flow that
formed them, observational estimates of the star forma-
tion e�ciency (rather than the SFR) could be compared
directly with the predicted SFR per dynamical time,
SFRdyn = SFR↵ ⌧dyn/⌧↵,0, where ⌧dyn = R/�v,3D, and
R is the cloud radius. With this definition of the dy-
namical time as a crossing time, SFRdyn decreases with

increasing ↵vir faster than SFR↵ , SFRdyn / ↵

�1/2
vir SFR↵ .

? has criticized the evidence presented by ?, in support
of his previous suggestion that the process of star for-
mation lasts approximately 1–2 dynamical times on all
scales (?). However, he defines the dynamical time as
1/(G⇢)1/2 = 0.54⌧↵,0, assuming that the cloud internal
velocity dispersion is of the order of the virial velocity,
which implies SFRdyn = 0.54 SFR↵ .
In §7, we show that the star formation rate in our HD

simulations achieves this predicted maximum value, for
any value of ↵vir we have tested (✏ = 1, independent of
↵vir), while in the MHD simulations only approximately
half of the magnetized gas above the critical density
seems to be in collapsing regions (✏ = 0.5, independent
of ↵vir). Because the simulations are reproduced by the
model with ✏ independent of ↵vir, the timescale ⌧↵ in ? is
not a good choice, as it would require their coe�cient �t

to vary with ↵vir (the relation ⌧↵,0/⌧↵,cr = x

1/2
cr ⇠ ↵

1/2
vir ,

shows that our model predicts a shallower dependence of
SFR↵ on ↵vir than in ?)
Figure ?? shows the result of equation (31) as a func-

tion of the virial parameter, for three values of the sonic
Mach number, MS,0 = 4.5, 9, and 18, in the MHD case,
� = 0.39, and in the HD case (� = 1). We have as-
sumed a value of ✓ = 0.35, as discussed in §2. In the
HD case (dashed lines) we have assumed ✏ = 1, while the
curves for the MHD case (solid lines) are computed for
✏ = 0.5. This choice of ✏ is motivated by the numerical
results presented in §7.

5. SFR IN SIMULATIONS OF DRIVEN MHD TURBULENCE

In the MHD simulation, the initial magnetic field is
such that the initial value of the ratio of gas to mag-

2 The integral in equation (31) is solved assuming that the crit-
ical density is not strongly correlated with the local value of the
density, or, equivalently, that the actual postshock thickness is not
strongly correlated with the postshock density.

(Hennebelle & Chabrier 11; Federrath & Klessen 12)

The SFR is given by the integral of the PDF:

The SFR depends on the three non-dimensional parameters:  ℳS,  β,  𝛼vir 
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Empirical SFR from Numerical Models 
!

The fundamental length-scales, from large to small, are:  
!
driving scale, L0  (largest turbulence turnover time) 
Jeans length, LJ,0 (gravity versus thermal pressure), 
sonic scale, LS (turbulence versus thermal pressure),  
dissipation scale (smallest turbulence turnover time) 

!
We must include LJ,0 and resolve LS, because the SFR is controlled by LJ,0 /LS 
(the SFR is low precisely because LS << LJ,0) 
!
Depending on the approach, we may or may not include the driving scale, L0
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local models with artificial driving
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Small-scale simulations with random driving (unigrid or AMR): 
!
[LS , LJ,0] ➞ Lbox /dx ∼ 103  
!
The limited range of scales is good for parameter studies 
⟼ derivation of the SFR law 
!
Large-scale simulations with physical (SN) driving (AMR): 
!
[LS , L0] ➞ Lbox/dx > 105 
!
The very large scale yields a large sample of star-forming 
regions, all with realistic boundary and initial conditions  
⟼ derivation of the intrinsic variance of the SFR law  
⟼ derivation of global SFR (self regulation?)



200 pc scale - Planck 
(ESA, LFI & HFI Consortia) !
Supernova driving

20 pc scale - Herschel 
(ESA, SPIRE& PACS Consortia) !

Turbulent cascade

5 pc box 
Large-scale 

random force

A chunk of a MC: 
!
Periodic Box 
Random forcing 
Isothermal E.O.S. 
Self-gravity 
Sink particles 

Local models below the physical driving scale



1000 M⨀ in a 5 pc box - 60 AU resolution



Small-Scale Simulations with Random Driving 
!

Large parameter studies with such models have been recently carried out both 
with uniform-grid simulations (Padoan and Nordlund 2011) and with AMR 
(Padoan, Haugbolle, Nordlund 2012; Federrath and Klessen 2012). 
!
The non-dimensional parameters controlling the SFR are 𝛼vir, ℳS  and ℳA. 
!
The numerical experiments roughly confirm the analytical models of the SFR, 
for a large range of values of 𝛼vir, ℳS  and ℳA  (Federrath and Klessen 2012).



The most important of the the three parameters is 𝛼vir (Padoan et al. 2012)
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The SFR per free-fall time is the e�ciency factor of a theoretical Schmidt-
Kennicut law,
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where ✏

wind

⇡ 0.5 accounts for mass loss through jets and winds, during the
formation of a star. This law only depends on the mean gas density and the
rms velocity of a star-forming region, so it is easily implemented in analytical
models and simulations of galaxy formation and evolution.

Focusing on the competition between supersonic turbulence and self-gravity,
the star-formation process can be shown to depend primarily on the ratio of
the turbulent kinetic energy, E

K

, and the gravitational energy, E
G

, of a star-
forming region. This ratio may be measured by the virial parameter introduced
by Bertoldi and McKee (1992),
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where �
v,1D

is the one-dimensional rms velocity, R and M the cloud radius and
mass respectively, and G the gravitational constant, and it has been assumed
the cloud is a sphere with uniform density. If the dynamical time is defined as
the ratio of the cloud radius and the three-dimensional rms velocity,
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the virial parameter can also be expressed as
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Global (Kennicutt), sub-kpc (Bigiel), and MC (Heiderman) scales are 
non-trivial to reconcile with each other: 

!
Different SFR probes: Hα, 24μm, stellar counts  
Extragalactic studies are blind to low mass stars

Heiderman et al. 2010



The analytical and the numerical SFR laws based on turbulent fragmentation 
can be applied to derive the Schmidt-Kennicutt relation of disk galaxies (e.g. 
Krumholz and McKee 2005; Krumholz et al. 2012; Renaud et al. 2012; 
Federrath 2013). 
!
In the case of disk galaxies, the driving is mainly from SN explosions, and the 
driving scale is of order 100 pc. We need to know the spatial distribution of 
the main non-dimensional parameters, 𝛼vir, ℳS  and ℳA, averaged over a 
100 pc scale.  
!
!



Self Regulation 
!
Imposing disk vertical equilibrium and self-regulated star formation, one 
can derive the Schmidt-Kennicutt relation without even knowing the SFR 
law (e.g. Ostriker et al. 2010; Ostriker and Shetty 2011; Kim et al. 2011; 
Ostriker et al. 2013). 
!
!
!
!
!
!
!
!
!
!
!
!
But is the SFR law derived from turbulent fragmentation consistent with 
self-regulation?  
!

Kim et al. 2011



Self-Regulation !
We have found that the SFR is very sensitive to 𝛼vir. Since the SN driving that 
determines 𝛼vir is proportional to the SFR, the process can self-regulate: 
!

Larger SFR —> increased 𝛼vir —> decreased SFR 

!

!

!

!

!

!

!
Using our simple exponential law, we derive an equilibrium value of 𝛼vir ∼ 1, 
giving a realistic gas consumption time of ∼ 1 Gyr. 
!
We can address the self-regulation numerically, with simulations including SN 
driving, while also resolving the formation of individual stars.

Kim et al (2013)



Large-Scale Models with Realistic Driving 

A chunk of a galaxy: 
!
Supernova driving 
Heating and cooling 
Galactic potential 
Self-gravity 
Sink particles 

M31 (NASA/JPL-Caltech)
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Range of scales: 
!

 1-32 kpc - 10-2 pc 
!

(17M cpu hr, PRACE on Supermuc) 
!
!

The SFR can be measured in many 
star-forming regions, with different 
𝛼vir, ℳS , ℳA 

Realistic initial and boundary 
conditions for each star-forming 
region  
We can derive the SFR law,              
SFR = f(𝛼vir, ℳS , ℳA)



Formation of 4,000 stars over 2 Myr, with realistic SFR and Salpeter IMF 



Conclusions 
!

We understand how turbulent fragmentation leads to the observed low star 
formation rate, and the SFR law has been modeled based on the statistics of 
supersonic turbulence 

The SFR law only depends on the three main non-dimensional parameters 
of the turbulence: 𝛼vir, ℳS  and ℳA  and is applicable to any scale (below 
the driving scale of the turbulence)  

The numerical parameter studies confirm the validity of the analytical 
model. They also suggest an empirical SFR law that depends mainly on 𝛼vir  

The sensitive dependence of the SFR on  𝛼vir  explains the approximate self-
regulation of star formation in disk galaxies. 

Global numerical models including the SN driving scale confirm the values 
of the self-regulated SFR and 𝛼vir.


