Origin and excitation mechanisms of the warm CO, IAS OH, and CH⁺ in PDRs

Anna Parikka¹, Emilie Habart¹, Jeronimo Bernard–Salas², Melanie Köhler¹, Javier R. Goicoechea³, Paolo Pilleri⁴, Alain Abergel¹, Cécilia Pinto⁵, Christine Joblin^{6,7}, Maryvonne Gerin⁸, Emmanuel Dartois¹, Benjamin Godard⁸, David Teyssier⁹, Olivier Berné^{6,7} and Asunción Fuente¹⁰ Astrophysique Spatiale (IAS), Orsay, France 2) The Open University, Milton Keynes, UK 3) Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid, Spain 4) Los Alamos National Laboratory, Los Alamos, New Mexico, USA 5) Laboratoire d'Astrophysique de Marseille (IAM), Marseille, France 6) UPS-OMP, IRAP, Université de Toulouse, Toulouse, France 7) CNRS, IRAP, Toulouse, France 8) LERMA, Observatoire de Paris, Paris, France 9) European Space Astronomy Centre (ESAC), Madrid, Spain 10) Observatorio Astronómico Nacional (OAN, IGN), Icalá de Henares, Spain Institut As

Introduction

Spatially resolved studies of photodissociation regions (PDRs), where physics and chemistry are driven by FUV photons, are essential in enabling us to understand the molecular cloud structure and characterize the physical and chemical processes that control the energetics in a region of active star formation. Our goal is to examine the spatial distribution of CO, CH⁺, and OH as a function of the local conditions in the Orion Bar, one of the nearest nearly edge-on luminous PDRs.We are interested in the main excitation and formation processes of these key molecules and their dependencies on vibrationally excited H_2 and the strong UV radiation. The spatially resolved studies also give the possibility to examine the evolution of dense cores in the irradiated warm environment.

Observations

- Fully sampled observations with PACS: area of ~100"x100".
- Spatial resolution between 6" to 10" (0.01-0.02 pc)
- Targeted lines: CO J=19-18 (137 μm), CH⁺ J=3-2 (120 μm, cube includes: OH 119 μm), and OH 84 μm (PACS)
- SPIRE observations on ¹²CO (transitions: J=5-4 to J=13-12) and ¹³CO (transitions: J=5-4 to J=11-10)
- HIFI observations on CH+ J=2-1 (342 $\mu m, strip$ marked in blue)

CH⁺ and OH in the Orion Bar

CH⁺ |= 3-2 and OH 85 µm have similar critical densities (~10¹⁰ cm⁻³) and upper energy levels (~250 K) which make them ideal for comparison. CH⁺ and OH are

CH⁺ comparison with H₂:

CH⁺ formation: $H_2 + C^+ => H + CH^+$ (endothermicity: 4300 K)

To overcome the energy threshold to form CH⁺, H₂ ro-vibrational energy can be used when available.

 $CH^{\scriptscriptstyle +}$ correlation with $H_2^{\scriptscriptstyle *}$ suggests that the formation process of CH⁺ depends on H2^{*} (in agreement with Lambert & Danks 1986, Agundez et. al 2010)

CH+ J=2-1 (HIFI) line width resolved observations

CH⁺ shows broader line width, ~3.5-4 km/s, than excited CO (HIFI <2.5 km/s). Since they spatially coincide, the different line width should be due to a specific excitation process.

The line broadening results from the excess energy of the nascent CH+, equivalent to 5360 K after reaction with vibrationally excited H₂, corresponding to a FWHM of Doppler motion of 4.4 km/s.

comparable to CO

the irradiated dense

structures like the high-J

CO. Thus, they originate

J=19-18 in spatial morphology. They trace

OH comparison with H₂: OH formation: $H_2 + O => H + OH$

The less good correlation between OH and H_2^* suggests that the formation process of OH is less dependent on H_2^* (in agreement with Agundez et. al 2010).

Fig. 4

As well as corresponding to the irradiated structures (Goicoechea et al. 2011), the OH emission seems to also correspond with a bright young object, identified as a proplyd.

Spatial distribution of the warm CO

The edge of CO J=19-18 emission agrees well with FUVpumped excited H₂. Like excited H₂, high-J CO directly traces the irradiated dense structures.

The same clumps (10"-15") are seen in CS, tracing the densest part of the clump, and CO J=19-18 and excited H₂, tracing the edge of the dense clumps.

Excitation of the warm CO

- The excitation temperature is high at the PDR edge, where the PAH
- emission peaks due to UV heating. This puts strong constraints on the origin of the CO excitation: UV heating dominates.
- Cosmic rays are excluded as a dominant heating mechanism as their effect would penetrate also inside the Bar

Physical properties of the Orion Bar: cooling curve analysis

Using RADEX we derive the gas temperature, CO column density, filling factor, thermal pressure, and the length of the Bar along the line-of-sight for each pixel in the map.

Comparing the length along the line-of-sight to the observed projected emission width (~20", see Fig. I) of the excited CO, we determine that the gas density must be of the order of 10⁶ cm⁻³.

We use the ratio of CO J=19-18/CO J=11-10 and the ratio of CO |=8-7/13CO |=8-7 to derive the temperature and CO column density in the whole mapped area assuming a uniform density of 10⁶ cm⁻³.

Clear trends are shown in map: temperature is higher closer to the ionizing stars and decreases towards behind the Bar. The column density is higher in the Bar and lower in front and behind it.

Results

- High-J CO, OH and CH⁺ trace the dense irradiate structures in the Orion Bar
- UV heating dominates the CO excitation
- CH⁺ formation is dependent on the excited H₂
- Chemical pumping is important to CH⁺ excitation
- OH emission also corresponds to a known proplyd in the region

Related poster: 2.02 - Jeronimo Bernard-Salas

REFERENCES: <u>REFERENCES:</u> Agundez et al. (2010), ApJ, 713, 662 Bernard-Salas et al. (2012), A&A, 538, A37

Goicoechea et al. (2011). A&A. 530. L16 Joblin et al. (in prep.) Köhler et al. (2014),A&A, 569,A109

Lambert & Danks (1986), ApJ, 303, 401 Nagy et al. (2013) A&A, 550, A96 Walmsley et al. (2000), A&A, 364, 301

Fig. 8