Molecular Line and Continuum Modeling of IRDC Star forming Clumps **Russell Shipman** SRON Netherlands Institute for Space Research, Kapteyn Institute Luis Chavarría Universidad de Chile Friedrich Wyrowski

Max-Planck-Institut für Radioastronomie

G28.34+0.06 MM: $H_2O(1_{10}-1_{01})$

Approach

Infrared Dark Clouds (IRDCs) seen in silhouette against Galactic Mid-IR emission but seen in emission in sub-mm. Cores in IRDCs are young and massive. (Beuther et al. 2007)

Determine physical 1D structure of IRDC clumps from dust continuum between 70 to 850 microns (Whitney et al. 2013, ApJS, 207:30)

Ratran modeling molecular emission/absorption (Hogerheijde & van der Tak (2000, A&A 362, 697) HIFI and APEX: H₂O, H₂¹⁸O, N₂H⁺, C¹⁷O, CH₃OH, C³⁴S

500

۲

250

Sources

- •Two clumps in two IRDCs (G28.34+0.06, G11.11-0.12)
 - 2x Millimeter peak positions: signs of star formation
 - 2x NH₃ peak positions: **no signs** of star

formation

Temperature and density profiles

[Jy]

density

Flux

Initial Modeling

Initial Results: estimate MM clump mass and mass	
averaged dust temperature	
• G28.34 This work: $(d=4.0 km c)$	
$-$ This work: <10>=13.5K, L=5800 L _{\odot} , M=3500 M _{\odot} (d=4.8 kpc)	
– Ragan: Td=20K, L=2950 L _☉ , M=534 M _☉ (d=4.52 kpc)	
• G11.11	
– This work: <td>=13.0, L=1900 L_☉, M=680 M_☉ (d=3.6 kpc)</td>	=13.0, L=1900 L _☉ , M=680 M _☉ (d=3.6 kpc)
– Ragan: Td=24K, L=1444 L _☉ , M=80 M _☉ (d=3.4 kpc)	
ED fitting underestimates mass of IRDCs. Radiative Transfer	
S a must . (See Jiali Zhu Mohai Huang A&A 2014, 564, A111)	

Temperature/density profiles feed into Ratran estimate molecular abundance description of velocity structure. **Next Steps** • Model H_2O an $H_2^{18}O$ for mm positions Model other lines Model continuum of NH₃ positions Model H₂O an H¹⁸O for NH₃ positions