

Constraints on star formation in the Taurus L1495 cloud from SPIRE/PACS observations of dense cores as part of the Herschel Gould Belt Survey

> K. A. Marsh¹, J. M. Kirk², P.Palmeirim³, M. J. Griffin¹, D. Ward-Thompson², Ph. André³, A. Men'shchikov³, and HGBS team

> > 1: Cardiff University, 2: University of Central Lancashire, 3: CEA-Saclay

Contact email: Ken.Marsh@astro.cf.ac.uk

Summary

- Catalogue of dense starless cores in L1495/B211/B213 region of Taurus Molecular Cloud, derived from *Herschel* PACS/SPIRE continuum images 70–500 µm (cf Palmeirim et al. 2013)
- SED fits to greybody dust models => mean dust temp., core mass, column density
- Classify core as gravitationally bound (prestellar) if mass > (BE critical mass)/2 (Konyves et al. 2010)
- Largely complete for $M > 0.1 M_{sun}$ (prestellar) and $M > 0.02 M_{sun}$ (unbound cores, including those located in less dense, off-filament regions)
- All of the detected prestellar cores lie on filaments
- Prestellar core mass function (CMF) consistent with lognormal form
- Overall starless CMF (unbound + prestellar) is *not* lognormal
 - No evidence for low-mass turnover
- Density probability distribution function *is* lognormal except for high-density tail attributable to prestellar cores
 - Consistent with models of supersonic turbulence + self gravity

Herschel Gould Belt Survey

Prestellar core CMF (*dN/d*log*M*) Blue:

- Overall starless core CMF (solid: corrected Red: for incompleteness; dashed: uncorrected)
- Chabrier (2003) stellar system IMF Dotted: - scaled in mass by 1.15

Core Mass Function

Blue: Prestellar core CMF (in the alternate dN/dM representation to facilitate comparison with Kroupa's segmented power law IMFs)

Dotted, *dashed*, *dash*-dot: Kroupa (2012) stellar system IMFs (f = assumed binary frac.)

- Major goal: Characterize the prestellar CMF and the link between the CMF/IMF and cloud structure over the densest parts of Gould Belt (André et al. 2010)
 - 15 nearby molecular clouds, including Taurus
- Principal product: Catalogue of all detected dense cores & protostellar objects ۲
 - Present work is one installment of the dense cores section of catalogue

Data analysis

- Source detection via *getsources* (Men'shchikov et al. 2012)
- Source classification principal conditions for classification as starless core:
 - o robustly detected in 160–500 μm range & column density map and
 - \circ not detected at 70 μ m (to exclude protostellar objects) and
 - o not coincident with known extragalactic object

Starless core locations on 250 µm continuum image

- Field of view = $4^{\circ} \times 2^{\circ}$
- Green circles represent all extracted sources classified as starless cores

Prestellar core locations on filamentary column density map

- Greyscale represents column density of filamentary structures
- estimated using getfilaments (Men'shchikov 2013)
- 100% scale => $15 M_{sun}/pc$ •
- Red circles represent prestellar core locations

www.PosterPresentations.com