

SPIRE

In-flight Performance, Status and Plans

Matt Griffin on behalf of the SPIRE Consortium

Herschel First Results Workshop

Photometer

AOT Status: Photometer

- Scan Map and Parallel Mode
 - Released for nominal source brightness settings
 - Bright source settings now defined: release imminent
 - Active thermal control of 300-mK stage: to be evaluated
- Small Map
 - Decision to change mode from 64-point jiggle to small scan map
 - AOT to be available ASAP in 2010
- Point Source
 - On hold due to issues Beam Steering Mechanism and nodding stability
 - Planned to be available early in the new year
 - Comparison to be made with small map

Scan-Map Sensitivity

Pre-launch (HSpot) estimates (instrument noise)

- One repeat = two cross-linked scans
- Numbers referred to point source detection in a map in the absence of confusion noise
- For (250, 350, 500 μm)
 - 1- σ sensitivity for one repeat:
 - No. of repeats to achieve 3 mJy rms:

Achieved instrument noise

- Standard map pixel sizes (6, 10, 14)"
 - 1- σ sensitivity for one repeat:

Extragalactic confusion levels

Measured 1-σ confusion noise for (250, 350, 500 μm):
 (4, 5, 6) mJy/beam for (6, 10, 14)" map pixels

Herschel First Results Workshop

(12, 8, 12) mJy/beam

PSW (250 μm)

PMW (350 μm)

Herschel First Results Workshop

PLW (500 μm)

Herschel First Results Workshop

Photometer Beams

(as given in Scan-Map Release Note)

Band (μm)	Fitted Gaussian FWHM (arcsec)
250	18.1 ± 0.4
350	25.2 ± 0.5
500	36.9 ± 1.0

Ellipticity: $Y/Z \approx 1.08 \pm 0.05$

- Fine-scan observations of Neptune being analysed
 - Above numbers will not change much
- Main beams very well fitted by Gaussian response
- Detailed effective PRF and conversion from Jy/beam to Jy/pixel to be derived
- Individual beam profiles for every detector will eventually be made available

Herschel First Results Workshop

250 \mum Model over 6'x6'

Linear scale

Log scale

Photometer Flux Calibration

- Primary calibrator is Neptune (Moreno Model)
- Estimated absolute accuracy = ± 5% (correlated over the SPIRE range – i.e., whole spectrum moves up or down)
- Note: Moreno model is 2-3% warmer than the Griffin & Orton model often used for groundbased submm calibration

Photometer Flux Calibration

- Neptune not available for most of PV
- Larger asteroids as secondary/interim calibrators
 - Also not available for most of PV
- Current SPIRE pipeline uses interim calibration based on early observations of Ceres
- Recent Neptune observations and non-linearity characterisation analysis still to be completed
- Current calibration is very accurate wrt Neptune model
- Interim correction factors can be applied to pipeline flux densities (with statistical uncertainties):

- 250 μm:	$\textbf{1.02} \pm \textbf{0.07}$
------------------	-----------------------------------

- 350 μm : 1.05 \pm 0.12
- 500 μm : 0.94 \pm 0.06

Herschel First Results Workshop

Photometer Scan-Map Pipeline

- Current Level 2 products are naïve maps
 - MadMap not yet implemented as standard
- Various remaining issues to be addressed
 - Pointing:
 - Small systematic shifts during long observations
 - Fix devised and under test
 - Baseline removal
 - 1/f noise
 - Glitch replacement

Photometer Scan-Map Pipeline

- Baseline removal
 - Median baseline removal added to L2 processing before the map making stage
 - Improved temp-drift calibration will ease but not eliminate the effects
 - SPIRE consortium and OT users are investigating improved algorithms
 - De-correlation using thermistor signals over an entire observation has been very successful

Herschel First Results Workshop

median baseline subtraction

robust linear baseline subtraction per scan

Photometer Scan-Map Pipeline

- Residual 1/f noise
 - Small effect, remaining from temperature drift correction
 - Produces low level structures in the background
 - Improved operation of 300-mK temperature control will be tested

Herschel First Results Workshop

SPIRE Scan-Map AOT and Pipeline: Future Plans

- AOT implementation: possible updates
 - 300-mK temperature control
 - Less frequent PCal operation
 - Dithering for maximum uniformity of coverage
 - Use of small scan map even for point source AORs
- Pipeline (pre-mapmaking)
 - Correction for pointing shifts
 - Improved baseline removal
 - Improved flux calibration
 - Glitch replacement
- Mapmaking
 - Current baseline plan: implementation of MadMap as standard SPIRE mapmaker
 - Review of mapmaking will be held in January to assess mapmaking options in the light of in-flight characteristics and scientific needs

Spectrometer

Reminder of SPIRE FTS Capabilities

- Wavelength range: 194 671 μm
- Entire range covered simultaneously
- Continuum measured as well as spectral lines

- 35 and 19 detectors in SSW and SLW arrays
 - Imaging spectroscopy over ~ 2.6 arcmin fov
- Spectral resolution (adjustable)
 - High: 1.2 GHz
 - Medium: 6.7 GHz
 - Low: 25 GHz

Spectrometer Status

- Spectrometer commissioning and PV was delayed due to thermal and OBS issues affecting the mechanism operation
- PV and SD have been successfully hybridised all SD users of the FTS have some data
- Point source/sparse map spectroscopy AOT now released
 - Caveats
 - Calibration currently only guaranteed for on-axis detector pair
 - Bright source settings not yet available
 - Nominal settings OK for flux densities < 50/150 Jy in SLW/SSW bands)

- FTS mapping
 - Intermediate/full spatial sampling AOT to be released early 2010

Spectrometer Sensitivity

- In-flight sensitivity is significantly better than pre-launch estimates
- Improvement factor of 2 3 at present
 - May get better still as data processing and RSRF characterisation are further improved
- Reasons for better sensitivity
 - Telescope is less emissive
 - Lower background allows second-port calibrator to be switched off – further reduction in photon noise
 - Detectors are running slightly colder than assumed
 - FTS model is complex with a number of uncertainties, so a "pessimism factor" was applied pre-launch

FTS Line Spectroscopy

(0.04 cm⁻¹ unapodised; W m⁻² x 10⁻¹⁷ 5- σ 1 hr)

Herschel First Results Workshop

FTS Line Spectroscopy

(0.04 cm⁻¹ unapodised; W m⁻² x 10⁻¹⁷ 5- σ 1 hr)

Herschel First Results Workshop

FTS Low-Res. Spectrophotometery

(0.83 cm⁻¹ unapodised; mJy 5- σ 1 hr)

Herschel First Results Workshop

Spectrometer Sensitivity

- Caveats for current data processing
 - So far, sensitivities are limited by systematic noise associated with channel fringing and imperfect RSRF removal
 - Noise currently integrates down as N_{Reps}^{1/2} for up to ~ 2500 s (~ 20 repeats) in high-res mode, then more slowly
 - Better data processing will improve basic sensitivity and allow noise to integrate down
 - No change to AOT implementation will be needed, so longer integrations can be scheduled now

Resolving Power

Resolving Power

Wavelength

Beams

- Broad-band FWHM for centre detectors
 SSW D4: 19 ± 1" SLW C3: 35 ± 1.5"
- Pre-flight estimates: 16" and 34"
- Variation across the band:
 - Measurements made and being analysed

Overlap Between Bands

- Good agreement in overlap region for point sources
 - Beamsize difference will affect extended sources
- Short-wavelength overlap for cross calibration with PACS

Flux Calibration

- Currently:
 - SSW: 10 20%
 - SLW: ~ 30%
- Better for stronger sources
- Will improve with better modelling of instrument emission

Spectral Range and Wavelength Calibration

- Wavelength coverage:
 - As per pre-launch prediction:
 - 14.9 51.5 cm⁻¹ \equiv 194 671 μ m
- Wavelength calibration
 - Accurate to 1/10 of a spectral resolution element across both bands
 - Slight systematic deviation: +30 km s⁻¹ offset (1/10 resolution element at shortest wavelength and 1/30th at longest wavelength)

FTS Data: Issues to be Addressed

- Flux calibration
 - Instrument and telescope temperature variations to be modelled and corrected
- Deep integrations
 - Known issues with standing waves and RSRF definition
 - Characterisation and correction procedures are under development
- De-glitching
 - Glitch shapes are consistent and repeatable
 - Small impact on current sensitivity
 - Deglitching routines are being optimised and tested
- Strong source settings
 - To be verified and released
 - Sources as strong as Mars are observable

Conclusions

- The SPIRE instrument is fully functional with performance matching or exceeding pre-launch estimates
- Current pipelines are already producing very high-quality data, and further improvements are being made
- Flux calibration is already very good and will be further improved
- Work in early 2010 will concentrate on
 - Releasing remaining AOTs
 - Enhancing pipeline products and calibration
 - Supporting observers

Simply InSPIRErational

Happy Christmas 2009 From the SPIRE Team

