TNOs are Cool: A Survey of the Transneptunian Region

Thomas Müller & MPE Garching

The TNOs-are-Cool Team (37 members, 19 institutes, 9 countries)

Overview

- OT KP with 370 hours
- PACS and SPIRE photometric point-source observations
- characterisation of about 140 Trans-Neptunian Objects (with known orbits)
- target with a few mJy up to 400 mJy
- <u>Key element:</u> highly reliable photometric accuracy in 3 (6) bands
- time-critical observations with follow-on constraint (confusion noise)

Science Goals in a Nut Shell

- Radiometric size and albedo solutions
 - accurate sizes (\rightarrow volumes) of TNOs
 - \rightarrow primordial (D> 200 km) size distribution
 - accurate spectroscopic and polarimetric modeling
 - albedo vs Size vs Colour vs Composition vs Orbit vs Binarity vs ...
 - \rightarrow probe formation and evolution processes
- Thermophysical properties (from 3 to 6 Pacs/Spire bands)
 - temperatures & thermal inertia
 - \rightarrow ice vs rock surface, surface type
 - emissivity \rightarrow grain size information
 - beaming parameter \rightarrow surface roughness
- **Binary densities:** mass from Kepler's 3rd law, volume from Herschel
 - → basic geophysical parameter
 - \rightarrow interior structure/composition
 - \rightarrow binary formation mechanism

- Thermal lightcurves
 - \rightarrow disentangle albedo/shape
 - \rightarrow spin-axis orientation
 - \rightarrow thermal inertia
 - \rightarrow large surface structures

Herschel Study of the Kuiperbelt & TNOs:

\rightarrow a benchmark for understanding the solar system debris disk, and extra-solar ones as well!

Müller et al. 2009, Earth, Moon & Planet 105, 209-219

Overview SDP TNO Programme (\sim 25 h)

• PACS (1st part, completed)

- chop-nod point-source photometry with dither, tracking
- 2 or 3 band photometry, repetition factors 10...36
- 7 targets, including Pluto, Typhon and Makemake
- PACS (2nd part, partly scheduled)
 - mini scan map, array angles 63/117 deg (grouped)
 - 3.5' length, 10 scans, 4'' separation
 - 3...10 repetitions, follow-on in selected cases
 - 7 targets, including Haumea lightcurve

• SPIRE (SDP completed)

- Mode: Large Map, Scan Angles A and B, 4' length, 12 rep.
- repetition (follow-on) after 44/66 hours, tracking
- 2 targets: 90482 Orcus and 136472 Makemake

SPIRE Results

- Both SPIRE targets are nicely detected: "Follow-on" is the key technique for these faint moving targets!
- Flux density of both TNOs at 250 and 350 μ m is about 10 mJy (not final)
- Preliminary thermophysical analysis of Spire photometry already indicates the very high scientific potential: the measurements will constrain the size, albedo, thermal properties, surface properties, ... in an unprecedented way
- analysis of multi-band photometry has just started

Thomas Müller

135472 Makemake: Model fits for combined Spitzer/Herschel fluxes

Thomas Müller

90482 Orcus (2004 DW), SPIRE scan maps 250 μm

90482 Orcus (2004 DW), differential neg./pos. image¹

¹the negative [background minus (background + TNO)] and positive [(background + TNO) minus background]

- 90482 Orcus: has a significantly higher albedo than previously assumed (→ larger size)
- Dwarf planet 136472 Makemake: belongs to the 3 biggest TNOs (Eris, Pluto), but among these "giant dwarf planets" it is the only one without satellite. The Spire 250 μ m measurement can either be explained by a very extreme albedo (>0.8), leading to a diameter between 1500 and 2000 km, or by a high thermal inertia, indicative of a bare rock or densly packed ice surface (the Pacs/Spire multi-band analysis will give the answer).

PACS Results

- very nice and highly accurate measurement of Pluto in 3 bands (just before Pluto entered the galactic plane/centre region)
- 6 targets analysed (based on own flux calibration/color correction):
 - + 2 are significantly fainter than predicted
 - + 3 are about at the right flux level
 - + 1 was significantly brighter than predicted
- just below 10 mJy was the faintest detected target
- improvement in analysis still needed
- poor or no detections in the red channel (single measurement, no follow-on)
- in general: S/N values are significantly lower in chop-nod mode than expected from HSpot

Thomas Müller

TNOs are Cool!

East Longitude

East Longitude

42355 Typhon 70 & 100 micron

208996 2003 AZ84 70 & 160 micron

Outlook & Conclusions

- SPIRE programme can go ahead, but AORs require timing constraints and have to be split for the implementation of "follow-on"
- PACS programme will be switched to "mini scan maps" for better sensitivity and better background characterisation

TNOs are Cool!

... and waiting to be observed by Herschel!