

First Results from the Very Nearby Galaxies Survey

Chris Wilson

McMaster University (Hamilton, Ontario, Canada)

On behalf of the SPIRE consortium (the SPIRE Nearby Galaxies Astronomy Group)

Very Nearby Galaxies Survey

SPIRE Nearby Galaxies Astronomy Group

• W. Gear, S. Madden; S. Eales, A. Boselli, C. Wilson

R Auld, M Baes, M Barlow, G Bendo, J Bock, M Bradford, V Buat, N Castro Rodriguez, P Chanial, S Charlot, D Clements, D Cormier, L Cortese, J Davies, E Dwek, D Elbaz, M Galametz, F Galliano, J Glenn, H Gomez, M Griffin, S Hony, K Isaak, L Levenson, N Lu, B O'Halloran, K Okumura, S Oliver, M Page, P Panuzzo, A Papageorgiou, T Parkin, I Perez Fournon, M Smith, M Pohlen, N Rangwala, E Rigby, H Roussel, A Rykala, N Sacchi, M Sauvage, B Schulz, M Schirm, L Spinoglio, J Stevens, M Symeonidis, M Vaccari, L Vigroux, H Wozniak, G Wright, W Zeilinger

Outline of talk

- Overview of goals and structure of the survey
- Spectroscopy
 - CO ladder and spatially extended line emission in M82
 - Thermal water in emission and absorption in Arp 220
- Photometry
 - M81 radial gradients in SPIRE colours
 - Tidal debris or Galactic cirrus?

Physical processes in the interstellar medium of nearby galaxies: Science Goals

- Physical properties of dust grains
 - Size, composition, temperature, fraction of mass in different components
 - Variation with type of galaxy
- Very cold dust: where is it found?
- Heating and cooling in ISM
 - Dependence of gas heating on G_o/n, heating source for cold dust
- Gas and dust in unusual environments
 - Above the plane, near AGN, mergers/starbursts

GALEX images of the VNGS target objects

Very Nearby Galaxies Survey

Physical processes in the interstellar medium of nearby galaxies: observing modes

- SPIRE photometric mapping to 1.5 D₂₅
- PACS photometric mapping to 1.5 D₂₅
- SPIRE spectroscopy (FTS) in nucleus and surrounding regions (one pointing)
 - CO ladder, ¹³CO, [CI], [NII], H2O, etc.
- PACS spectroscopy in region observed with FTS and along a radial strip
 - [CII] at 158 microns
 - [OI] at 63 and 145 microns
 - [OIII] at 88 microns
 - [NII] at 122 and 205 microns

Very Nearby Galaxies Survey

Physical processes in the interstellar medium of nearby galaxies: observing modes

- SPIRE photometric mapping to 1.5 D₂₅
- PACS photometric mapping to 1.5 D₂₅
- SPIRE spectroscopy (FTS) in nucleus and surrounding regions (one pointing)
 - CO ladder, ¹³CO, [CI], [NII], H2O, etc.
- PACS spectroscopy in region observed with FTS and along a radial strip
 - [CII] at 158 microns

Herschel First Results workshop

- [OI] at 63 and 145 microns
- [OIII] at 88 microns
- [NII] at 122 and 205 microns

Very Nearby Galaxies Survey

M82 Spectroscopy with SPIRE FTS

Very Nearby Galaxies Survey

SPIRE

A Complete Spectrum from 200 to 600 microns

Radiative Transfer Modeling of M82

Lines used: ¹²CO ladder from J=4 to J=12
Fixed beam sizes used for SLW (25") and SSW

(19.6")

- Central pixel only
- Single component model
- Preferred P/k = nT \sim 2.5x10⁵ K cm⁻³
- P/k is order of magnitude larger under assumption o flarger filling factor from emitting regions
- Presence of warm gas indicated in M82

Very Nearby Galaxies Survey

Imaging M82 with the SPIRE FTS

Background image: SPIRE 250 microns

Very Nearby Galaxies Survey

Herschel First Results workshop

Madrid -- December 17, 18 2009

Very Nearby Galaxies Survey

Arp 220: Thermal Water Emission

Very Nearby Galaxies Survey

SPIRE

Arp 220: a rich molecular spectrum

Results for water in Arp 220

- Detect 7 of 8 water lines between 600 and 1210 GHz
 - only line not detected is the weakest (SPLATALOGUE)
- Mean redshift of H₂O lines 0.01790 or 5370 km/s
 - Blueshift suggests emission coming from the western nucleus, which is also brighter in continuum

Very Nearby Galaxies Survey

Results for water in Arp 220

- Ground-state line is in absorption and appears broadened
- Remaining lines are in emission
 - Interesting contrast to ISO data, where H₂O in this galaxy always seen in absorption
- Combination with ISO and PACS data will pinpoint temperature

M81 from 250 to 500 microns with SPIRE

Very Nearby Galaxies Survey

M81 near the dust emission peak

PACS 160 microns

MIPS 160 microns (Gordon et al. 2004) Very Nearby Galaxies Survey

M81 far-infrared colour maps

(PACS 160) / (SPIRE 250)

(SPIRE 250) / (SPIRE 350)

Very Nearby Galaxies Survey

Radial temperature gradient in M81

F(350)/F(250)

Very Nearby Galaxies Survey

Good correlation with dust and star formation250 micronsGALEX NUV with(colour+contours)250 micron contours

Very Nearby Galaxies Survey

Herschel First Results workshop

M81: the big picture

SPIRE 250 microns

Very Nearby Galaxies Survey

M81: the big picture

SPIRE 250 microns

Very Nearby Galaxies Survey

Galactic Cirrus or Tidal Debris near M81?

SPIRE contours on GALEX FUV

Very Nearby Galaxies Survey

SPIRE contours on HI

SPIRE 250:500 micron colours

- Strong and spatially extended molecular and atomic emission lines seen in M82
- Arp 220: First detection of thermal water in emission in an external galaxy
- M81: radial far-infrared colour gradients and possible tidal debris

We anticipate additional exciting new results from these and future Herschel observations of very nearby galaxies!