First Results from the Very Nearby Galaxies Survey

Chris Wilson

McMaster University
(Hamilton, Ontario, Canada)

On behalf of the SPIRE consortium
(the SPIRE Nearby Galaxies Astronomy Group)
SPIRE Nearby Galaxies Astronomy Group

- W. Gear, S. Madden; S. Eales, A. Boselli, C. Wilson

Outline of talk

• Overview of goals and structure of the survey
• Spectroscopy
 • CO ladder and spatially extended line emission in M82
 • Thermal water in emission and absorption in Arp 220
• Photometry
 • M81 radial gradients in SPIRE colours
 • Tidal debris or Galactic cirrus?
Physical processes in the interstellar medium of nearby galaxies: Science Goals

• Physical properties of dust grains
 • Size, composition, temperature, fraction of mass in different components
 • Variation with type of galaxy
• Very cold dust: where is it found?
• Heating and cooling in ISM
 • Dependence of gas heating on G_0/n, heating source for cold dust
• Gas and dust in unusual environments
 • Above the plane, near AGN, mergers/starbursts
GALEX images of the VNGS target objects

M51 M81 N891 N2403
M83 M82 N4038/9 CenA
N1068 N4151 N205 N4125 Arp220

Very Nearby Galaxies Survey Chris Wilson
Physical processes in the interstellar medium of nearby galaxies: observing modes

• SPIRE photometric mapping to 1.5 D_{25}
• PACS photometric mapping to 1.5 D_{25}
• SPIRE spectroscopy (FTS) in nucleus and surrounding regions (one pointing)
 • CO ladder, 13CO, [CI], [NII], H2O, etc.
• PACS spectroscopy in region observed with FTS and along a radial strip
 • [CII] at 158 microns
 • [OI] at 63 and 145 microns
 • [OIII] at 88 microns
 • [NII] at 122 and 205 microns
Physical processes in the interstellar medium of nearby galaxies: observing modes

- SPIRE photometric mapping to 1.5 D_{25}
- PACS photometric mapping to 1.5 D_{25}
- SPIRE spectroscopy (FTS) in nucleus and surrounding regions (one pointing)
 - CO ladder, 13CO, [Cl], [NII], H2O, etc.
- PACS spectroscopy in region observed with FTS and along a radial strip
 - [CII] at 158 microns
 - [OI] at 63 and 145 microns
 - [OIII] at 88 microns
 - [NII] at 122 and 205 microns
M82 Spectroscopy with SPIRE FTS

Messier 82 © ESA and the SPIRE consortium
A Complete Spectrum from 200 to 600 microns

Intensity

Frequency (GHz)
Radiative Transfer Modeling of M82

- Lines used: 12CO ladder from J=4 to J=12
- Fixed beam sizes used for SLW (25") and SSW (19.6")
- Central pixel only
- Single component model
- Preferred $P/k = nT \sim 2.5 \times 10^5$ K cm$^{-3}$
- P/k is order of magnitude larger under assumption of larger filling factor from emitting regions
- Presence of warm gas indicated in M82
Imaging M82 with the SPIRE FTS

Background image:
SPIRE
250 microns

PACS ~FOV (spectrometer)

~50”
Extended [NII] in M82

Approx. Beam FWHM 50"

Very Nearby Galaxies Survey

Chris Wilson
Arp 220: Thermal Water Emission

NASA, ESA, Hubble Heritage team

© ESA and the SPIRE consortium
Arp 220: a rich molecular spectrum
Results for water in Arp 220

- Detect 7 of 8 water lines between 600 and 1210 GHz
 - only line not detected is the weakest (SPLATALOGUE)
- Mean redshift of H$_2$O lines 0.01790 or 5370 km/s
 - Blueshift suggests emission coming from the western nucleus, which is also brighter in continuum

SMA image
Sakamoto et al. 2008
Results for water in Arp 220

- Ground-state line is in absorption and appears broadened
- Remaining lines are in emission
 - Interesting contrast to ISO data, where H$_2$O in this galaxy always seen in absorption
- Combination with ISO and PACS data will pinpoint temperature

Gonzalez-Alfonso et al. 2004
M81 from 250 to 500 microns with SPIRE
M81 near the dust emission peak

MIPS 160 microns
(Gordon et al. 2004)

PACS 160 microns
M81 far-infrared colour maps

(PACS 160) / (SPIRE 250) (SPIRE 250) / (SPIRE 350)
Radial temperature gradient in M81
Good correlation with dust and star formation
250 microns
GALEX NUV with
250 micron contours
M81: the big picture
M81: the big picture

SPIRE
250 microns
Galactic Cirrus or Tidal Debris near M81?

SPIRE contours on GALEX FUV

SPIRE contours on HI

SPIRE 250:500 micron colours
Summary

- Strong and spatially extended molecular and atomic emission lines seen in M82
- Arp 220: First detection of thermal water in emission in an external galaxy
- M81: radial far-infrared colour gradients and possible tidal debris

We anticipate additional exciting new results from these and future Herschel observations of very nearby galaxies!