

$\lambda/\mu m$	70	120	175	250	350	50
D/m	3.5	3.5	3.5	3.5	3.5	3.
Ω /arc^2	13.9	40.7	86.6	176.8	346.4	707.
n5	12469	4243	1995	978	499	24
	0.74	3.2	11	18.6	20	16.

Factors affecting choice of Fields

- Factors affecting quality of data
 - Cirrus Confusion Noise
 - Zodiacal photon noise
- Factors affecting the ease of conducting the survey
 - FIRST visibility
 - Existing survey data
 - Easy of ground based follow-up

Existing/Potential Surveys													
• SIRTF SWIRE Legacy Programme Lonsdale et al.													
$- \sim 70$ sq. deg at all SIRTF photom. bands													
– Constraints more severe than for FIRST													
 should be able to detect first FIRST source in IRAC 													
bands	IRAC MIPS												
	λ 3.6 4.5 5.8 8.0 24 70 160												
5σ 7.3 9.7 27.5 32.5 0.45 2.75 17.5													
	5σ	7.3 μJy	9.7 μJy	27.5 μJy			2.75 mJy						
				1	1								

Existing/Potential Surveys

• XMM-LSS

- $-5x10^{-15} erg cm^2 s^{-1}$
- 64 square degrees (low- β)
- should detect first FIRST source if a Seyfert 1/2 not if star-bust
- GALEX
 - -200 square degrees U_{AB} = 26 fields?
- Radio
 - needs to be $\sim 100 \mu$ Jy or better over 100 sq deg.?

