

ASTRO-F Survey as an Input Catalogue for FIRST

Takao Nakagawa (ISAS, Japan) & ASTRO-F Team

ASTRO-F (or IRIS)

- Second Japanese IR Astronomy Mission
- 70 cm Cooled Telescope
- FIR All Sky Survey
- NIR-FIR Deep Imaging & Spectroscopy
- Solar synchronous orbit
- Launch: by M-V-6 in early 2004
- Results: Excellent Inputs for FIRST

Mechanical Cryocoolers

- Two-Stage Stirling
 - Two sets
- 200 mW @ 20K
- Merits
 - Mission Life X 2
 - NIR Observation after He run out

Telescope

- 70cm R.C.
- 5.8 K
- Diff. Limit@5.m
- SiC
 - Porous Core
 - CVD Coat
 - Light (....)

Focal Plane Instruments

- FIS (Far-Infrared Surveyoror)
 - All Sky Survey
 - Deep Imaging and Spectroscopy (pointing)
- IRC (Infrared Camera)
 - Imaging and Spectroscopy (pointing)

Detector System of FIS

N60 $50 - 75 \,\mu\text{m}$ $30'' 20 \,x \,2$

Ge:Ga

WIDE-S 50 - 110 μm 30" 20 x 3

Ge:Ga

WIDE-L $\,$ 110 - 200 μm $\,$ 50" $\,$ 15 x 3 $\,$

stressed

Ge:Ga

N170 $150 - 200 \, \mu m$ 50" 15×2

stressed

Ge:Ga

All Sky Survey with FIS

- Pixel Size is not Small
 - Almost Diffraction Pattern Size
 - Poor Sampling
- Tilted Detector Config.
 - Nyquist Sampling even in cross-scan
 - Effective resolution with the pixel size

FIS as a Spectrometer

- Imaging Fourier Transform Spectrometer
 - Polarizing FTS
 - Spectral Range 50-200 .m
 - Detector: Wide-L & Wide-S
- Performance
 - Spectral Resolution 0.2 cm⁻¹
 - Line Detection 2(LW)– 6(SW) X 10⁻¹⁷ W m⁻²

FIS: Comparisons with SIRTF

- Advantage of ASTRO-F
 - All Sky Survey with Wide FOV
 - Spectroscopic Imaging Capability
- Advantage of SIRTF
 - Better spatial sampling, higher resolution
 - Deeper Sensitivity

IRC: Comparisons with SIRTF

- Advantage of ASTRO-F
 - Wide FOV (10' vs 5')
 - Wider Spectral Coverage
 - (2-26 .m vs 3-8.m)
 - NIR spectroscopy
- Advantage of SIRTF
 - Better Spatial Resolution
 - Higher Spectroscopic Resolution in MIR

FIS All Sky Survey as an Input Catalogue for FIRST

- Unbiased, All Sky Survey
- Longer Wavelength Coverage
 - 50-200 .m (c.f. IRAS 12-100 .m)
- Higher Spatial Resolution
 - 30" (50-100.m) 50" (100-200.m)
 - C.f. IRAS 2-5 arcmin
- Better Sensitivity
 - 30 100 mJy (c.f. IRAS ~1Jy)

Common Scientific Interests

- The formation and evolution of galaxies
 - Star-formation history in the universe
 - Wide Area Survey vs Deep Imaging
- Formation of stars in the Galaxy
- Formation of planets in extrasolar systems

Timely Release of Catalogues

- ASTRO-F
 - Launch: Feb 2004
 - Exp. He hold time: until Sep 2005
 - Survey: mostly in the first half-year, and to be supplemented in the following period
- Quick release of results is essential
 - Bright Source Catalogue at high-b in 2006
 - Following Releases of other catalogues

Collaboration with ESA

- Goals
 - Quick release
 - More observations
- ESA Responsibilities
 - Pointing Reconstruction
 - Support of additional ground station(s)
- For European Community
 - Quick Access to the ASTRO-F results
 - Open time (10 %) for Pointing Observations

Summary

- ASTRO-F
 - To be launched in early 2004
 - 70 cm cooled telescope
 - Two focal plane instruments: FIS & IRC
 - Survey type mission
- FIS All Sky Survey
 - Ideal inputs for FIRST
 - Quick release of results is important