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outline 

•  Introduction: there is more than meets the eye 
•  Grain population « best fit » models 
•  Statistical (collisional) models 
•  N-body codes 
•  Coupled collision+dynamics models  

 - first efforts 
 - perspectives 
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Debris discs: what do we see? 
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Small (<1cm) DUST particles 
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Debris discs: what do we see? 

DUST that is not primordial 

(Artymowicz, 1997) 

Relative timescales in the 
beta Pic disc 

tremoval << tdisc 

dust grains steadily produced by collisions from 
larger unseen « parent bodies » 
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collisional cascade 

size 
distribution ??? 

what we see 

Debris discs: what do we see? 

The tip of the collisional iceberg 



•  Imaged debris discs show pronounced structures   

They rarely look 
like this  

They rather look 
like this 

”something” is shaping them: planets?  companion star? Transient events? 
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 Grain population « best fit »  models 

•  No assumptions about what is going on in the system 
•  Aim: fit SEDs or/and resolved images 
•  Find the best spatial and size distributions for the grains 
•  Based on radiative transfer models 
•  Chemical composition and grain structure 

(see also posters by Booth; Olofsson, Lestrade; Ertel; 
Donaldson, Stapelfeldt, Broekhoven-Fiene) 



•  Star properties 
–  Spectral type, magnitude, 

distance 
–  NextGen synthetic stellar 

spectrum 

•  Disk Geometrical properties 
–  Surface density profile:  

2-power law (r0, αin, αout): Ring-
like discs 

–  Inclination 

•  Grain properties 
–  Hard, spherical grains   
–  Grain size distribution 

 dn/da ∝a-κ, from amin to amax 
 
–  Grain composition 

•  Optical indexes available for 
various materials (silicates, 
organic refractories, ices, etc.) 

•  Multi-material, possibly porous, 
grains: use of an effective 
medium theory 
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the GRaTer code (Augereau et al., 1999) 



•  Fitting strategy: 
–  Chi-square minimization 
–  Bayesian analysis 
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GRaTer method & 
results 
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(Lebreton et al., 2012) 
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« A new mechanism to produce the dust in the presented debris 
disks, deviations from the conditions required for a standard 
equilibrium collisional cascade (grain size exponent of  −3.5), and/
or significantly different dust properties are necessary to explain 
the SED shape of  the three debris disks presented » 

SAnD (Ertel et al., 2012) 

SEDs with steep decrease at long wavelengths 

Grain size distribution steeper than -3.5 (no coll. Equilibrium!) 
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SEDUCE & SUBITO 
(Müller, 2011) 

Can also be used taking 
as an input the results of 
the ACE collisional model  
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Ultra-cold discs 

Marshall et al.(2012) 

(see also talk by Krivov) 



Churcher et al.(2011) 
fit of the β-Leo debris disc  
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Possible solutions Planetary system architecture? 

Planet(s) in the 2-15AU region 

Planet(s) in the 2-30AU region 

No planet in the 2-65AU region 

Links to planets  



Principle 
• Poor Spatial resolution, poor dynamics  
• Dust grains distributed in Size Bins (and possibly spatial/velocity bins) 
•  “Collision” rates between all size-bins 
•  Each bini-binj interaction produces a distribution of binl<max(i,j) fragments 
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• Collision Outcome prescription (lab.experiments, simulations ) 
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Benz&Asphaug, 
1999 

Critical fragmentation Energy (Q*) 
conflicting estimates 



High e orbits of  grains close to the 
RPR limit 

a1 
a2 

a3 
a4 

a5 
da • Extended Disc: 10-120AU 

• Size range: 3µm – 50km  

takes into account 

• Collisions (fragmentation, 
cratering, re-accretion) 

•  simplified, non-evolving 
dynamics 

• Radiation pressure effects 

Multi-annulus code (Thebault&Augereau, 2007) 



size distribution evolution (Thebault&Augereau, 2007)  

Evolution of  an extended disc 

Primordial material  Gravity regime 

Strength regime 

Big mess regime 

dNαr-3.5dr law 
 
 
 

Synthetic Images (1D) with GRaTer 



Initial belt of  
planetesimals 

Debris disc at 
subsequent 

time instants  
 

ACE 

Developed by: 
Krivov & Sremčević 

(2003-2004), 
Löhne 

(2005-2012) 

Features: 
Ø  statistical code on an (m,q,e)-mesh 
Ø  stellar gravity & radiation pressure 

Ø  diffusion by P-R, stellar wind, gas drag 
Ø  sticking, bouncing, cratering, disruption 

Ø  distributed parallel computing 
                        

The ACE  code (Jena group) 



Long-term collisional 
evolution 

Wyatt (2008) (Kenyon&Bromley runs) 

Löhne et al.(2008) 

Steady state evolution models predict 
that there is an Lmax for a disc of a given 
radius and age (Wyatt, 2007) 



Dynamical models 

Ingredients 
 

•  N-body integrator 
•  Gravity from central star 
•  Gravity from perturber(s)  
•  Radiation Pressure 
•  PR-drag 
•  Gas drag 
•  ….NO COLLISIONS 

(see also posters by Bonsor; Faramaz; Morey; Kennedy) 



Resonant capture of  
planetesimals 

Rèche et al. (2007) 

Vega 1.3mm emission (Wilner et al. (2002) 

Quillen & Thorndike (2002) 

Easy trapping when : 
•  planets migrate  
•  dust drifts inward (PR drag) 
•  Planets increase in mass 



Secular response of  a 
disc to an eccentric 

planet 

•  Differential precession of 
planetesimal orbits 

•  Transient spiral features 
•  Pericentre glow  

Spiral structures in 
HD141569 (Wyatt et al., 

2005) 

(See also poster by V.Faramaz on zeta 
Ret.) 
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Linking planets to the radial 
distribution of  dust 

Freistetter et al.(2007) 



Accounting for size distributions 

dN α r-3.5dr (collisional « equilibrium ») 

Moro-Martin et al.(2002) 

Because Radiation Pressure & PR drag 
induce a size-dependent dynamics for the 

smallest grains (high β=(FRP/FGRAV)) 



steady collisional 
production of small grains 
placed on high-e orbits by 
radiation pressure 

(Krivov, 2010) •  Spatial segregation according to sizes => different 
collisional behaviour/evolution (and thus size distribution) 
depending on location => -3.5 law no longer valid 

•  Feedback of collisions on the dynamics 
•  RP places grain in potentially unstable regions 

The dust grains that are (usually) observed are the troublemakers 
(smallest bound particles) 

N-body models are not enough: NO COLLISIONS! 

•  Collision timescales can be < dynamical timescales Prevent the building 
of spatial structures 



N-body runs: spatial 
structures but no 

collisional evolution or 
size distribution  

Statistical simulations: 
collisional evolution, (detailed 
collision prescriptions), size 
distribution but no (or poor) 

dynamics 

either or 

OK if only large particles 
(sub-mm images) OK if no perturbations 

AND 

need for a coupled 
approach 



•  Multiannulus 
coagulation/
fragmentation code 
(masses <0.01 Mearth) 

•  N-body code     
(masses > 0.01 Mearth) 

Herschel "Pebbles to Planets" 
27 

Multi-annulus hybrid code (Kenyon&Bromley) 



•  Hybrid model from 
Booth et al. (2009) 

•  4 populations: 
   - Planets 
    - Embryos 
    - Planetesimals 
    - Dust 

Herschel "Pebbles to Planets" 
28 

Raymond et al. (2011) 

Debris disc as signposts of  planet 
forming discs 



Collisional grooming model (Stark & Kuchner) 

Create successive streams of 
particle trajectories, that are 
used as collision maps for 
successive iterations. 

•  Adapted to PR-drag drifting 
grains captured by a planet 

•  Impressive results for the 
Kuiper Belt 

•  Works only (so far) for one 
circular perturber 

•  No fragmentation (fully 
destructive collisions) 



Set up Parent Body Ring 
optical depth τ  

set-up: external 
perturber 



3 steps 
•  1) Parent Body run: for β=0 particles, 
until dynamical steady state is reached. 
Save10 PB disc profiles for 10 ≠ positions of 
the companion on its orbit separated by 
dtsav=torb/10 

• 2) Collisional Runs: From each of the10 
PB discs, 105 small grains are released 
following dNα s-3.5ds. They are assigned a 
collision destruction probability as a function 
of size and location. All particle positions are 
recorded at each dtsav. Runs are stopped 
when all particles have been removed by 
ejection or collisions  

•  3) Recombining: Use all collisional runs 
to reconstruct the dust distribution, at 
steady state, for each orbital position of the 
perturber. 

DyCoSS Code (Thebault, 2012)  

•  System at steady state 
•  One perturber on any orbit 
•  Self-consistent size distribution 



eB=0 
precessing 

spiral 
structures  

(Thebault, 2012) 

acrit 

 eB=0.75 
Invariant 

asymmetric 
disc  

 eB=0.2 
precessing 

spirals for half 
the orbit 

eB=0.5 
spiral at 

periastron 
passages  

Response of  a collisional disc to 
binary perturbations 



Discs in binaries: SEDs (using GRaTEr) 



Planets in collisionally active discs  

at steady state 
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Fitting the HR4796 disc? 

(Lagrange et al., submitted) 

Observed profile 
(Schneider et al., 

2009) 

8 Mjup planet at 102 AU 

5 Mjup planet at 98 AU 
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The first fully coupled collisions+dynamics 
code: LIDT (Charnoz, 2012) 

Step 3:evolve size distribution in 
each cell  

Step 4: reproject the grid onto a 
system of particles 
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Debris disc version 
of  LIDT (Kral/Thebault) 

•  First test: reproduce 
well known robust results 
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FIN 




