

Fomalhaut

2 M_o, A3V, 200 Myr, 7.7pc
Disk discovered 1985 with IRAS, one of the "big four"

 One of the most important imaging targets

SCUBA @ 850µm

edge-on doughnut
diameter 315 AU
cavity
clumps due to large collisions?

probably not

Holland et al 1998 Holland et al 2002 Wyatt & Dent 2002

Spitzer @ 24,70,160µm

Inner hole partially filled

Asymmetry

Stapelfeldt et al 2004

CSO/SHARK II @ 350µm

 i=70 degrees
 center displaced by 8 AU, planet with e=0.06?

Marsh et al 2005

ATCA @ 7mm

Prior Art: Hubble @ optical

			Geometry
-200 -100 0 100 200 (AU)			
		HST/optical	Herschel/70µm
	a	141 ± 2	137 ± 0.9
	e	0.11 ± 0.01	0.125 ± 0.006
	i	65.6 ± 0.4	65.6 ± 0.5
	Ω	156.0 ± 0.3	156.9 ± 0.5
	ω	31 ± 6	1 ± 6
	Offset	15 ± 1	17.2 ± 0.9

Photometry and SED

400 AU aperture, uncertainties 10% 10% calib. errors

Added values from SPITZER, stellar photometry, and SCUBA

3 component model

- 1. Source ring of colliding planetesimals with equilibrium cascade and redistribution by radiative forces.
- 2. Central unresolved component
- 3. Powerlaw surface density to reproduce residual emission inside the source ring (PR grains?)

Radial distribution of particles

Modeling results: Main Ring

- Source ring from 133 to 153 AU
- \odot Contains 8×10^{25} g below 5000μ m.
- Many grains below the blow-out size (13µm)needed to get the SED, the color, and the extend of the images correct
 - Replenishment time ~1700 yr
 - Mass in blowout grains ~3·10²⁴ gram
 - Mass loss rate (= mass production rate):
 2000 1km comets/day

 \odot ~10¹³ comets to sustain over 200Myr

Modeling results: Inner disk and central point

Inner disk

8×10²⁵g in grains up to 5000 µm
 Surface density increases linearly with r
 21-29% of flux in HERSCHEL images
 Central point

 \odot 50% of stellar flux at 70 μ m

Grain model

- Icy grains with 25% vacuum by volume
- Amount of dust in blowout grains is robust and nearly independent of the grain model (including pure silicate models)

 Because heating and radiation pressure are both due to absorption properties.

Scattering constraints

Scattering constraints

 Interaction of large grains with radiation has three components:

Absorption \longrightarrow 40-45%
 Reflection \longrightarrow 5-10%

Ø Diffraction

Scattering constraints

 Single scattering albedo very low (few %, Kalas et al. 2005)

Thank You!

