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starting points

e GASPS survey tracks planet formation to ~30 Myr
e epoch of assembling most of the Earth’s mass

* see remaining accretable dust, plus volatiles important
for future life
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* keyis modelling : j
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early-to-late
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systematic or random processes?

e see huge diversity of discs and planetary systems

e some initial conditions must be random? e.g. angular
momentum inherited from protostellar accretion phase

* so e.g. ‘what last fell in” and star-star encounters could
lead to star/disc/planet misalignments
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key factors for evolution

e can try to identify these for a statistical ensemble

e angular momentum example:
* disc-braking of young 01,
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preliminary results from DEBRIS



debris surveys with Herschel

GT (Pl Goran Olofsson) — the archetypes

DUNES (Pl Carlos Eiroa) — large samples of nearby
Sun-like stars

DEBRIS (Pl Brenda Matthews, + Jane Greaves) —
unbiased completion of local volume

* range of approaches means few stars are missed

 cf. with Spitzer, volume-complete late on (~2010)
 DUNES and DEBRIS share stars for maximum effectiveness



 DEBRIS and DUNES both use PACS plus SPIRE
* omit only stars with high IR backgrounds

 DUNES is complete for d < 20 pc for FGK stars,
extended to 25 pc for planet-hosts

* depth scaled to detect photospheres at S/N =5 at 100 um;
close to Kuiper Belt debris levels

 DEBRIS observes nearest ~90 stars of types A,F,G,K+M
* constant depth at 100,160 um to give unbiased view

* hence late-type photospheres undetected, but can still
discover massive and/or resolved discs
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challenges

* observational:
 identification of background objects (distant galaxies)

e subtraction of the stellar photosphere to few-% precision

* if these are wrong, candidate |
debris discs could be false, or

wrong conclusions drawn about

disc structure
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* interpretation:
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outputs

e wealth of information from resolved images & SEDs

o fit Ty g SPECtral slope

* find I'dust/l‘star' Ivldisc' rdisc/rblackbody

* hence links to evolution,
planet, star companions,
Solar System...

1

* NB new submm surveys

* fitting for cooler discs
* SONS with SCUBA-2 at
850,450 um (2012+)

G-star HIP 22263 (PACS data from DUNES;
SCUBA image from Greaves et al. 2009)
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mass

Greaves & Wyatt (2003)
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disc evolution

e evolution is more marked for A-stars

* dynamical time shorter for higher M. and same rg,;
appears many A-discs have r < 50 AU and so fade overt,_,

single stars multiple stars
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disc evolution
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links to planets

e previously, little connection of presence or
brightness of debris with planets in system
* now hints that low-mass planets connected to debris?

 DEBRIS/DUNES estimate: 5/24 discs in ‘Jupiter’-hosting
FGKM systems but 6/13 for ‘Neptunes’

* illustrates breakthroughs
possible with robustly
sized samples of stars

Lebreton et al. (2011)

Table 1: DUNES statistics

Sp. type F G K Total
Sample 28 53 52 133
Observed 26 51 49 126
Non-excess 17 37 38 02
Excess (New) 9(2) 14(6) 11(5) 34(13)
"Peculiar" 2 2 4

Resolved 4(3) 84 4(2) 12 (9)
Excesstplanet 2(2) 7(1) 2(1) 11 (4)




outcome predictions

* natural consequence in models \ .
where initial mass reservoir of |
solids dictates how fast planets R
and planetesimals grow S el

* Can mMap masses in proto—planetary : -
discs correctly onto ‘massive’ and 2. -
‘low mass’ outcomes, for different i |
Ste”ar typeS ° a1 265 215 ies  is  oes ot
Spectraltype  MaxMge Min[Fe/H]  Min Mygrigs Min M. Pr— P w-o; :: (Msun)

(Miup) (planet) (Mg, for planet)  (Mjyp, at [Fe/H] =0)  Predicted Observed Predicted Observed

FGK 600 07 400 120 84+3 85410 - 1943
A 150* —0.36 200 60 2047 2043 55411 70411 Greaves
M 270 —0.12 650 200 19413 33+15 14+4 <T7(~2) (2010)




comparison to Solar System

* primordial Kuiper Belt must | T

have been much more R S

massive... appears it was 10 oows ) L

cleared out during giant J 3.3331‘/\ N

planet migration LR S I ) N
870 875 880 885 890 J

* now see planetary systems " J
with far more debris at far |

Nice model W;
later ages than Late Heavy 10°7| extropolted| ]
Bombardment (~0.8 Gyr) 10 100 1000 10000
Time, Myr

el :
|mpI|es cata!strophlc Booth et al. (2009); overlaid J and
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disc-star interaction

e precision of PACS images allows fitting of inclinations

* hence test of alighment of rotation axes of star and disc,
where (P, v sin i, R«) accurately known

* appears that (unlike I L
case of close-in planets) 0 )i
rotation axes of debris ” 1

discs are well aligned
with their host stars

inclination of star
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new parameter spaces

e cold, faint debris discs
* Ty~ 20Korless, Ly, /L

~10°

star

e dust with steep spectral index
... linked phenomena?
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new parameter spaces

* small debris discs

e resolved for the first
time below the size
of the Kuiper Belt

* multiple dust belts
* e.g.pLeo:upto3
debris belts
* better analogues to
the asteroid &
comet belts of the
Solar System

K004 vs.
G008 (Kuiper Belt-sized)

Churcher et
al. (2011)
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‘oredictors’ of debris

e unbiased statistics from DEBRIS suggest:
* incidence of discs is ~1/4 for any spectral type AFGK
* not e.g. higher for A-stars

[ No debris
I Debris star

Ul [@)]

» stellar age weakly correlated

IS

e evolution is slow

%Y

Number of sources

e only noticeable for A-stars?

N

* binarity is important, presumably

1© =

for dynamical stability

1 0 1 3 4 5

2
log a[AU]
* planetesimals survive best in close or wide binaries
* hosting a planet is not strongly correlated with debris

* but (esp. low-mass) planets and debris discs do co-exist



solar twins

* but, very Sun-like stars do show some trends?
* among DUNES/DEBRIS ‘solar twins’, old ones undusty:

G006
G013
G036
G048
G080
G120
Sun

t ~0.3 Gyr
t~1.5 Gyr
t ~0.3 Gyr
t ~8 Gyr

t ~0.3 Gyr
t~7 Gyr

t =4.5 Gyr

Ty =18 K  Rypp=1.40
Tyc= 144K Rygn=1.02
T4c= 115K Rygp=2.11
no disc R100=1.05
Ty =88K Rypg=3.13
no disc R100=0.92
Thc “40K  Rygp~1.057

(Vitense et al. 2010)

* no clear link to planets, but note 51 Peg
(G048) also undusty

.15 F Avg. obundance (Tc<900K) =-0.035£0.019

Solar twins (22)

F Slope (T¢>900K) = 0.0956+0.0292 j

ﬁ’*’ ¥ @%ﬁ

0 500 1000 1500
T, (K)
Ramirez et al. (2009):
loW T .ndense glements
are depleted in solar
twins ??



future observations

* SPIRE is giving insights to cool discs... can follow up at
higher resolution with SCUBA-2 (450,850 um: 8,15")
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submme-bright debris discs:

completing the 60 pc sample

h 2 HD 10647, 17pc
Fomalhaut, 8pc (LABOCA)
(SCUBA)
HD 107146, 27pc
(SCUBA)

beta Pic, 19pc @
(SCUBA) \/

HD 98800, 45pc
SCUBA-2
i ( ) 49 Ceti, 59pc
(SCUBA-2) p-

HD 61005, 35pc

(SCUBA-2) . '

Science Verification images from SCUBA-2 at 850 um for SONS, Jan 2012



the future - now

 ALMA is just starting to image debris
discs... soon will be able to examine
scales and structures for archetypes
and more! ... from the populations
uncovered by Herschel
G
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Three views of the Vega debris disk. Left: IRAM image (Wilner 2002). Center: Wyatt
model (2003). Right: Simulation of Wyatt model as observed by ALMA (Reid 2008).



