The connection between inner and outer debris disks probed by infrared interferometry

Olivier Absil
University of Liège

From Atoms to Pebbles – Herschel’s view of Star and Planet Formation
Grenoble, 22 March 2012
Inner vs. Outer Debris Disk

- **T ~ 40 K**
 - Small near/mid-IR excess
 - Difficult to resolve (< 0.1")

- **T > 300 K**
 - Prominent far-IR excess
 - Easy to resolve (>1")

Lisse et al. 2012

![Graph showing flux vs. wavelength for inner and outer disk regions.](image)
INFRARED INTERFEROMETRY MAY HELP

- Disk larger than angular resolution (λ/B) \rightarrow incoherent flux
 - Induces a visibility drop at all baselines
- Best detected at short baselines (\sim10-30m)

\[v^2 \approx (1 - 20 \left(\frac{2J_1(\pi b\theta/\lambda)}{\pi b\theta/\lambda} \right)^2 \]

requires very good accuracy ($<$1%)

Flux ratio

Resolved at 200m

\sim2 mas

\sim 40 mas \rightarrow resolved at 10m
HIGH PRECISION INTERFEROMETERS

FLUOR at CHARA

IONIC at IOTA

(VINCI) PIONIER at VLTI
Vega viewed by CHARA/FLUOR

Absil et al. 2006

Mean \(\theta \) : 3.328 \(\pm 0.003 \pm 0.013 \) mas

Disc/stor: 1.26 \(\pm 0.27 + \frac{GM}{r^2} \) \(0.92 \)

\(\chi^2 = 1.18 \)
Radiative transfer modeling

- H- and K-band interferometry (CHARA/FLUOR, IOTA/IONIC)
- N-band nulling interferometry (MMT/BLINC)
- Archival near- to mid-IR spectro-photometry

Defrère et al. 2011
Most probable dust properties

- Bayesian χ^2 analysis of large parameter space
 - Grains < blowout size
 - Hot grains (> 1000 K)
 - Presence of carbons ≥ 10%
 - Distance: ~ 0.1 – 0.5 AU
 - Steep density power law: $\alpha < -3 \rightarrow$ ring?

- Mass: ~$2 \times 10^{-9} \ M_{\text{Earth}}$
- Luminosity: ~$5 \times 10^{-4} \ L_{\text{star}}$

(same approach as in Lebreton et al. 44)
Next step: low-resolution spectra

- Dispersed fringes with PIONIER (soon FLUOR)
 - Flux ratio measurements across H and/or K band
 - Direct constraint on dust temperature

Defrère et al. (in prep)
Origin of hot dust: steady state?

- Local production?
- Connection to outer disk?
 - Poynting-Robertson drag?
 - Multiple scattering of comets?
Steady state multiple scattering

- Requires 3+ planets and $10^3 M_E$ in cold reservoir

Bonsor et al. 50
ORIGIN OF HOT DUST: TRANSIENT?

- Isolated event?
 - Large collision (e.g. Earth-Moon)
 - Break-up of giant comet

- Dynamical perturbations?
 - Falling Evaporating Bodies
 - Asteroid belt disturbed by MMR with massive planet
 - Late Heavy Bombardment
 - Global rearrangement

- Statistical study may help
Debris disk survey at CHARA/FLUOR

- Magnitude-limited sample ($K < 4$)
 - 25 cold disk host stars ($\text{dec} > -15^\circ$)
 - “Unbiased” control sample: 25 stars w/o cold dust

- Observed most stars, ~42 of sufficient quality

- One surprise: companion to epsilon Cephei

Mawet et al. 2011

330 mas separation, 2% flux ratio
PRELIMINARY STATISTICS VS. SPECTRAL TYPE

- Many more K-band excesses than anticipated!
 - Still need confirmation that this is (only) dust
- A-type stars more prone to hot dust
 - Same trend as in cold disks, frequency compatible
 - Suggests that they could be related (scattering?)

| Spectral Type | Hot Dust (Absil et al., in prep) | Cold Dust (Herschel/PACS)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>38%</td>
<td>DEBRIS 30%</td>
</tr>
<tr>
<td>F</td>
<td>21%</td>
<td>DUNES 25%</td>
</tr>
<tr>
<td>GK</td>
<td>27%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spectral Type</th>
<th>Exozod detection frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>37%</td>
</tr>
<tr>
<td>A</td>
<td>20%</td>
</tr>
<tr>
<td>F</td>
<td>25%</td>
</tr>
<tr>
<td>G</td>
<td>33%</td>
</tr>
<tr>
<td>FG</td>
<td>16%</td>
</tr>
<tr>
<td>K</td>
<td>19%</td>
</tr>
</tbody>
</table>
Preliminary statistics vs. cold dust

- No correlation with cold dust reservoirs
 - Suggests transient event rather than steady state

![Bar chart showing exozodi detection frequency for cold dust and no cold dust. The chart indicates 32% for cold dust and 25% for no cold dust.](chart.png)
PERSPECTIVES

- **EXOZODI project** (French ANR, 2011-2015)
- Extend survey to confirm statistics (goal: 200 stars)
 - North: refurbished FLUOR at CHARA
 - South: PIONIER at VLTI (Le Bouquin et al.)
- Investigate age dependence
- Follow up detections
 - Discriminate with potential binaries
 - Multi-color information for SED modeling
- Search for variability
- Improve models (RT, dynamics, collisions)

EXOZODI team
- Augereau (PI)
- Thébault (Co-PI)
- Absil
- Beust
- Bonsor
- Coudé du Foresto
- Defrère
- Ertel
- Kral
- Lebreton
- Le Bouquin
- Marbeuf
- ...

59