

Warm Debris Disks with WISE and Herschel

Deborah Padgett NASA/Goddard Space Flight Center

K. Stapelfeldt S. Fajardo-Acosta J. Krist D. Mawet

W. Liu D. Leisawitz S. Hinkley J. Debes

and the WISE Science Team

Project Overview

<u>Science</u>

- Sensitive all sky survey with 8X redundancy
 - Find the most luminous galaxies in the universe
 - Find the closest stars to the sun
 - Provide an important catalog fo JWST
 - Provide lasting research legacy

Salient Features

- 4 imaging channels covering 3 25 microns wavelength
- 40 cm telescope operating at <17K
- Two stage solid hydrogen cryostat
- Delta launch from WTR: 14 Dec 2009
- Sun-synchronous 6am 530km orbit
- Scan mirror provides efficient mapping
- Expected life: 10 months, actual 7.7-9.5
- 4 TDRSS tracks per day

Wide Field Infrared Survey Explorer

WISE Summary

• Launched 14 Dec 2009

- Band centers 3.4, 4.6, 12 & 22 microns
- Sensitivity better than 0.08, 0.11, 1 & 6 mJy
- Saturation at 0.3, 0.5, 0.7 & 10 Jy point sources
- Angular Resolution 6, 6, 6 & 12 arc-seconds
- Position accuracy about 0.15 arc-seconds 1σ 1-axis for high SNR
- Completed all-sky survey 17 July, big tank ran out hydrogen 5 Aug, little tank empty on 29 Sep, two-band survey for asteroids continued until 1 Feb 2011.
- Data releases:
 - -57% of the sky was released on April 2011
 - -All-sky release was last week 14 March 2012!
- Data products include image atlas and source catalog

http://irsa.ipac.caltech.edu/Missions/wise.html

DIRBE 3.5 microns IRAS 12 microns

WISE 3.4, 4.6, 12 microns 47' FOV 2.75" pixels 6" FWHM

V482 Car

Debris Disk Frequency from Spitzer Surveys (Trilling et al. 2008)

WISE Debris Disk Survey Goals

- Spitzer showed that 24 µm excess was rare among solar –type main sequence stars - all sky survey can complete inventory of these objects; WISE 100x more sensitive than IRAS
- 22 µm excess more common at young ages potential way to identify young field stars (and thus young planets)
- Find new strong-excess disks for high resolution follow-up imaging with HST, ALMA, etc.

WISE Debris Disk Survey Strategy

- Hipparcos/Tycho/Gliese catalogs correlated with All-sky survey (final WISE processing) – 25964 HIP matches
- Position search radius of 5" (including proper motions)
- Distances out to 120 pc
- Spectral types B M
- Candidates have W1-W4 > 25% greater than 4σ significance
- W1 > 3.5 to avoid worst saturation effects
- Every candidate has been examined in the WISE and 2MASS images for confusing sources and positional shifts in centroid from band to band; note problems and rejects

- 518 Hipparcos/WISE stars have apparent 22 micron excess > 4σ
- 348 are new (not previously determined to have excess in mid- to far-IR as of late 2011)
- 170 are previously known debris disk stars from IRAS, ISO, Spitzer, Akari
- Typical Hipparcos/WISE positional offset (WISE band 1) of 0.1-0.2"

Debris Disks in Hipparcos Stars, d < 120 pc

- B stars: 34 out of 282
- A stars: 243 out of 2466
- F stars: 163 out of 10757
- G stars: 67 out of 7489
- K stars: 11 out of 4477
- M stars: 0 out of 493*

 $12.1 \pm 2.0 \%$ 9.5 ± 0.6 % 1.5 ± 0.1 % 0.9 ± 0.1 % 0.2 ± 0.1 %

* Using colors. Photospheric fitting in progress

HR Diagram for WISE Debris Disk Candidates

B-V

- 66 Hipparcos/WISE stars within 120 pc with 12 micron excess
- Many are previously known PMS stars (few with inaccurate distances)
- 12 μ m flux density of most measured for first time
- Largely a subset of 22 μ m excess stars; few are too faint for reliable 22 μ m measurements
- 28 new 12/22 µm excess stars

Caveat Emptor

- Confusion is big issue for fainter stars
- Confusion often suggested by positional shift of emission centroid at long wavelengths
- Very saturated W1 sources produce false excess
- Photometric contamination from bright 22 μm companions and diffuse background nebulosity may produce false excess sources
- Astrophysical mimics include bright AGN, PN, cataclysmic variables, K and M giants
- Bottom line always check the images

WISE Debris Disk Hubble Follow-up

- Cycle 19 12 orbits approved on STIS for coronagraphic wedge imaging of 6 nearby WISE debris disk candidates
- Objective is to detect scattered light from cold dust disk in objects with newly detected warm dust IR excess
- Two objects observed to date

HST/STIS image of HD 141569 (IRAS/*Spitzer* disk)

What we hope to see!

Keck High Contrast Follow-up to WISE Debris Disk Sources

A-star with WISE 22 μm Excess

Excess at 22 mm indicates dynamical stirring & stellar youth.

-40 A-stars with WISE 22 mm excess already observed (February, October 2011); Now need common proper notion to confirm candidates

Three more Keck nights in June 2012 PI: Sasha Hinkley (Caltech)

- **Data Analysis (speckle reduction) ongoing by Hinkley, Mawet (ESO)**
- CPM Follow-up needed for any candidate companions

Herschel/PACS Photometry of WISE Debris Disk Candidates

- For most of its debris disk candidates, WISE only gives a single photometric point for the excess
- Does this emission arise from
 - A warm inner belt in the terrestrial planet region (such as for HD 69830, BD+20 307)?
 - Wien side of emission from cold/massive outer belt ?
- Full characterization of the detected disks requires *Herschel*
 - dust temperature
 - Fractional luminosity / total dust content

WISE Debris Disk Candidate Herschel Observations

- Herschel/PACS 70 & 160 micron imaging 99 new WISE 22 micron excess FGK stars
- 71/82 sources detected to date at 70 µm
- 36 detected at 160 μm

Resolved Sources

•8 PACS detections in this class•Disks or nearby heated ISM ?

Caveat Emptor, Encore

. HIP 35198 looks like an interesting cold disk • However, the PACS images showed the 70 micron source is 8" from the star position . This offset is hidden in the WISE data because the stellar photosphere still dominates at 22 µm · 17 of our PACS 70μm detections are > 4" from the stellar position

HST STIS Coronagraphy of HIP 35198

Caveat Emptor, Encore

· HIP 35198 looks like an interesti · However. images sho micron sou from the sta • This offse in the WIS because the photospher dominates 17 of our detections a from the ste position

HIP 117481 Spectral Energy Distribution

TYC 614-525-1 Spectral Energy Distribution

TYC 251-1015-1 Spectral Energy Distribution

HIP 95938 Spectral Energy Distribution

HIP 94491 Spectral Energy Distribution

HIP 79677 Spectral Energy Distribution

HIP 77094 Spectral Energy Distribution

HIP 76782 Spectral Energy Distribution

HIP 67497 Spectral Energy Distribution

HIP 67189 Spectral Energy Distribution

HIP 64837 Spectral Energy Distribution

HIP 63439 Spectral Energy Distribution

HIP 62657 Spectral Energy Distribution

HIP 62492 Spectral Energy Distribution

HIP 52947 Spectral Energy Distribution

HIP 46679 Spectral Energy Distribution

HIP 36312 Spectral Energy Distribution

HIP 25020 Spectral Energy Distribution

HIP 36312 Spectral Energy Distribution

Disk Properties

- Temperature estimates based on ratio of 22 μ m to 70 μ m excess emission
- Temperatures of dust range from 60 150 K
- Roughly equal numbers of "cold" < 80 K and "warm" > 100 K systems are found
- Fractional luminosities range 0.05-2x beta Pic
- Sources with 12 µm excess appear to be younger than sample as a whole (Sco-Cen)
- Some sources show evidence of multiple temperature components in SED

Future Work

- Extend debris disk survey to greater distances, fainter stars; A star photospheres visible to several hundred pc
- Concentration on individual sources and samples of interest (stars with planets, etc.)
- Kinematic associations for new disk candidates
- Better characterization of WISE data "gotchas"
- Uniform spectral classification and spectral age indicators for new disk hosts (Palomar)

This talk makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.