From pebbles to planets

Anders Johansen (Lund University)

with Michiel Lambrechts, Katrin Ros, Andrew Youdin, Yoram Lithwick

From Atoms to Pebbles – Herschel's View of Star and Planet Formation Grenoble, March 2012

Overview of topics

• From dust to pebbles by ice condensation Ros & Johansen (in preparation); poster by Katrin Ros

2 From pebbles to planetesimals by streaming instabilities Johansen, Youdin, & Lithwick (2012)

§ From planetesimals to gas-giant cores by pebble accretion Lambrechts & Johansen (submitted); poster by Michiel Lambrechts

Classical core accretion scenario

- Oust grains and ice particles collide to form km-scale planetesimals
- 2 Large protoplanet grows by run-away accretion of planetesimals
- Protoplanet attracts hydrostatic gas envelope
- lacktriangledown Run-away gas accretion as $M_{
 m env} pprox M_{
 m core}$
- footnotemark Form gas giant with $M_{
 m core}pprox 10M_{\oplus}$ and $M_{
 m atm}\sim M_{
 m Jup}$

Planetesimal accretion

- Planetesimals passing within the Hill sphere get significantly scattered by the protoplanet
- The size of the protoplanet relative to the Hill sphere is

$$lpha \equiv rac{R_{
m p}}{R_{
m H}} pprox 0.001 \left(rac{r}{5\,{
m AU}}
ight)^{-1}$$

Rate of planetesimal accretion

$$\dot{M} = \pi R_{\rm p}^2 \mathcal{F}_{\rm H}$$

Without gravitational focusing

$$\dot{M} = \alpha^2 R_{\rm H}^2 \mathcal{F}_{\rm H}$$

With gravitational focusing

$$\dot{M} = \alpha R_{\rm H}^2 \mathcal{F}_{\rm H}$$

Core formation time-scales

 The size of the protoplanet relative to the Hill sphere:

$$\frac{R_{\mathrm{p}}}{R_{\mathrm{H}}} \equiv \alpha \approx 0.001 \left(\frac{r}{5 \, \mathrm{AU}}\right)^{-1}$$

Maximal growth rate

$$\dot{M} = \alpha R_{\rm H}^2 \mathcal{F}_{\rm H}$$

- ⇒ Only 0.1% (0.01%) of planetesimals entering the Hill sphere are accreted at 5 AU (50 AU)
- \Rightarrow Time to grow to 10 M_{\oplus} is \sim 10 Myr at 5 AU \sim 50 Myr at 10 AU \sim 5,000 Myr at 50 AU

Directly imaged exoplanets

(Marois et al. 2008; 2010)

(Kalas et al. 2008)

- HR 8799 (4 planets at 14.5, 24, 38, 68 AU)
- Fomalhaut (1 planet at 113 AU)
- ⇒ No way to form the cores of these planets within the life-time of the protoplanetary gas disc by standard core accretion

Pebble accretion

- Most planetesimals are simply scattered by the protoplanet
- Pebbles spiral in towards the protoplanet due to gas friction
- ⇒ Pebbles are accreted from the entire Hill sphere
- Growth rate by planetesimal accretion is

$$\dot{\textit{M}} = \alpha \textit{R}_{\rm H}^2 \mathcal{F}_{\rm H}$$

Growth rate by pebble accretion is

$$\dot{M}=R_{\rm H}^2\mathcal{F}_{\rm H}$$

Time-scale of pebble accretion

- ⇒ Pebble accretion speeds up core formation by a factor 1,000 at 5 AU and a factor 10,000 at 50 AU (Lambrechts & Johansen, submitted to A&A; see also Ormel & Klahr 2010)
- ⇒ Cores form well within the life-time of the protoplanetary gas disc, even at large orbital distances
 - But requires large planetesimals to begin with...

Formation of large planetesimals

- Streaming instabilities lead to concentration of cm-sized pebbles (Johansen & Youdin 2007; Bai & Stone 2010)
- ullet Planetesimals with $d\sim 1000$ km form by gravitational collapse
- ⇒ Asteroids born big? (Morbidelli et al. 2009)
- Scaling to Kuiper belt gives twice as large planetesimals (Johansen, Youdin, & Lithwick 2012)
- ⇒ Explains why Kuiper belt objects are larger than asteroids
- ⇒ Largest planetesimals can grow to cores by pebble accretion

Formation of icy pebbles

 Pebbles are observed in abundance in nearby protoplanetary discs

(e.g. Testi et al. 2003; Wilner et al. 2005)

- How do pebbles form so efficiently?
- Near ice lines pebbles can form like hail stones
- Efficient formation of cm-dm sized icy pebbles near ice lines

(Ros & Johansen, in preparation; poster by Katrin Ros)

Summary of talk

- Ice condensation leads to efficient formation of pebbles near ice lines (Ros & Johansen, in preparation; poster by Katrin Ros)
- Streaming instabilities form large planetesimals (~Ceres or ~Pluto) (Johansen, Youdin, & Lithwick 2012)
- Starge planetesimals grow rapidly by pebble accretion, explaining the giants of the solar system as well as gas giants in wide orbits (Lambrechts & Johansen, submitted; poster by Michiel Lambrechts)
- ⇒ lcy pebbles may play important role in planet formation
- ⇒ Planet formation can be probed and constrained through observations of water vapour and pebbles