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Outlook

Thermo-chemical models of protoplanetary disk
atmospheres

Application on a prototypical disk, HD 100546
Studying the dependence on input parameters

Volatile carbon?




Thermo-chemical models

Model the heating and cooling of the gas self-consistently with the
chemistry (similar to PDR models)

Use a new package of codes, based on Bruderer et al. 2009a,b, 2010, 2012
and benchmarked with various test problems.

Input - Physical structure (density)
- Stellar spectrum
- Molecular data (e.g. chemical reaction rates)
- Dust properties
- Distance, inclination

Output - Gas/dust temperatures (depending on position)
- Chemical abundances (depending on position)
- Molecular excitation (depending on position)
- Line/continuum fluxes

goal: simulated observations to compare with Herschel data




Modeling
flowchart

|.) provide a density structure

2.) calculate the dust radiative
transfer for Tqust and local
(continuum) radiation field

3.) calculate chemistry and
molecular excitation

4.) calculate balance between
heating and cooling rates
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HD 100546

well-known, nearby (~ 100 pc) Herbig Be

| 3 AU inner hole: Planet formation?

Well observed from X-ray to radio,
in lines and continuum

SED fitting allows determination
of dust density structure (Mulders et al. 201 |)

All main carbon bearing species observed:
What happens to carbon? Bound in grains? Volatile?

NASA/JPL-Caltech artist’s concept




HD 100546

e Herschel-PACS observations (Sturm et al. 2010)

DIGIT open time key program (Pl N. Evans)

Detect e.g. CO (Jup ~ 14 to 31),[Ol] 63, 145 pm and [CII] 158 pum
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HD 100546

e APEX observations (Panic et al. 2010)

Detect CO (Jup = 3,6 and 7)

upper limits on [Cl] 370 pm
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Non-detection of [Cl] is a general trend beyond

D 100546 (Hogerheijde & van Dishoeck, in prep.)




Questions

What do high-] lines of CO tell about the disk
atmosphere!

All major inputs given from direct observations:
Do the models reproduce the lines!?

Where does the emission come from?

[CI] not detected, but predicted to be strong by previous
models (e.g. Jonkheid et al. 2007):What does this mean!?

What can we say about the carbon budget in the outer

disk, the material that somewhen ends up in the inner
disk!?
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Balance between heating/cooling gives Tgas > Tdust

(also in e.g. Kamp & van Zadelhoff 2001, Jonkheid et al. 2004, Nomura & Millar 2005, Gorti &
Hollenbach 2008, Woitke et al. 2009, Woods & Willacy 2009, Ercolano et al. 2009)
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Photoelectric heating on grains/PAHs, H, pumping and other heating processes versus gas-grain
accommodation, line cooling ([Ol], [ClI], CO, 3CO, OH, H,0,...) and other cooling processes.
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The warm atmosphere
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Warm atmosphere with Tgs > Tqusc necessary

to explain both high-] CO and [Ol]




Dependence on parameters!?

® Example: Different input (stellar) radiation fields

® Others parameters, like the PAH abundance: see arXiv:1201.4860
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Cooler radiation field: Less CO dissociation, more
efficient cooling, lower Tgs and thus less high-] CO




Where does the emission come from!?

Intensity at different velocity channels

log(l)
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Trace different regions: CO(30-29) mostly from the
inner ~ 50 AU, CO(3-2) from the whole disk




Where does the emission come from?

The higher-), the broader the line?
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HIFI can observe up to CO(16-15)
Stay tuned: Approved OT2 proposal to observe it!




Um a

Super-heated, gas rich and carbon poor?

Volatile Carbon!?

diffuse clouds
molecular clouds
dense cores
disk
atmospheres

COps 177




Volatile Carbon?
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less volatile carbon (with respect to cosmic abundance)
yields lower fluxes of CO, [Cl] and [CII]




Volatile Carbon?
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Higher gas/dust ratio (higher gas density) drives more carbon into CO

Can reproduce CO with [CI] for high gas/dust ratio and
low abundance of volatile carbon, but underestimates [ClII]




Where does [CllI] come from!?

Observer
PACS PSF 9 PACS PSF T . PACS PSF

diffuse remnant

envelope (?)
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Volatile Carbon!?
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Super-heated, gas rich and carbon poor?

Volatile Carbon!?

Can explain the upper limit of [CI] together with the CO ladder and
[Ol] for high gas-to-dust ratio, but low amount of volatile carbon. But
this underproduces [CII].

[CII] likely from a diffuse remnant envelope!

Herschel OT2 - Will observe [CII] with HIFI

We thus prefer the solution with high gas-to-dust, but a low
abundance of volatile carbon.Where has the carbon gone?
Complex organics?

Can we find evidence for a volatile carbon-poor atmosphere in other
disks?




Super-heated, gas rich and carbon poor?

Conclusions / Takeaway

We can reproduce the Herschel FIR line detections
towards a (prototypical) protoplanetary disk without
much tuning

Warm atmosphere (Tgs > Tdust) needed to reproduce
the high-] CO

High-] CO from radii of a few 10 - 50 AU

Evidence for a gas-rich, but atmosphere that is poor in
volatile carbon: Where has the carbon gone!?
Complex organics!?




