Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks

Ilse Cleeves, University of Michigan Edwin Bergin, University of Michigan Karin Öberg, Harvard-Smithsonian CfA. Michiel Hogerheijde, Leiden Observatory

From Atoms to Pebbles: Grenoble, France. March 22, 2012

Introduction

- Cold H₂O detected by Herschel in the outer regions of protoplanetary disks! (Hogerheijde et al. 2011, Bergin et al. 2010).
- The detection was significantly weaker than the models predicted:
 - Postulated dry surface grains → icy grains settled to midplane? Not without problems. (Vasyunin et al. 2011)
- We explore alternative scenarios to attempt to explain the cold H₂O puzzle in DM Tau with:
 - The Herschel o- H_2O limit (Bergin et al. 2010).
 - SMA H₂CO data from DISCS (Öberg et al. 2010) for additional potential grain surf. product constraints.

Constraints

DM Tau

CO J = 2 - I

What happened to the water? Alternative Mechanisms

I) X-ray Desorption of H₂O Precursors

- X-rays can deposit energy/heat into the grain lattice (Dwek & Smith 1996, Hasegawa & Herbst 1993, Leger et al. 1985).
- More E deposited into larger grains, however, shared over a larger volume ⇒ ΔT_{grain} is less.
 - For E_{XR} > 0.3 keV: 50 Å grains heated to
 > 120K; 300 Å grains heated to > 30K
 (Najita et al. 2001).
- Grains are thought to be coagulative.
 - Small 'spherical' subunits have small contact points, impede the transfer of E.
 - Maintain hotter grains!

FIG. 1.-Deposited energy as a function of incident X-ray energy

I) X-ray Desorption of H₂O Precursors

X-ray heated grain cools via:

- Ice evaporation (O, C, CO, NH₃).
- Transfer between neighboring subunits.
- Transfer to the bulk grain mass.
- **R**adiative cooling.

If the O, OH can be kept-off the grains - can decrease H₂O formation efficiency!

2) 'Carbon-goo' Coating on Grains

UV

- 🖬 Goo: (noun) \'gü\
 - I : a viscid or sticky substance
 - 2 : sentimental tripe

Merriam-Webster

- Ice-structure potentially layered (Hasegawa & Herbst 1993, Garrod et al. 2011).
- High organic fraction (>70%) seen in meteorites, carbon species comprised of largely aromatic, CH_X, CH_X(O,N) and CO-derived (e.g. Cody & Alexander 2005. Large, carbon-bearing molecules.

2) 'Carbon-goo' Coating on Grains

UV

- If the H2O-ice rich mantle is buried below
 >2ML of carbon-rich ices (CO, CO₂, H₂CO, CH₄, CH₃OH) → UV desorption efficiency significantly reduced.
- Competition between carbon-ice reformation and UV photo-erosion.
- Yields per monolayer of coverage taken from H₂O ice studies (Öberg et al. 2009).

DM Tau: The Model

- AMR code *Torus* (Tim Harries, U. Exeter) for the dust disk physical structure.
 - Disk-model formalism from Andrews et al. 2011 for SED fit.
 - Gas mass derived from C¹⁸O, ¹³CO fluxes (Dutrey et al. 1997); fg ~ 25.
 - **3** Dust Populations: Ig., sm., and inner disk grains.

- Spec. Type: MI
- **M** = 0.53 M_{\odot} ; L = 0.3 L $_{\odot}$

Model Results:

- $\blacksquare M_{disk,dust} = 1.1e-4 M_{\odot}$
- ***** $M_{disk,gas} = 2.8e-3 M_{\odot}$
- **R**_{inner} = I-I5 AU
- R_{outer} = 19 800 AU

Model Radiative Transfer: Stellar UV

- Calculated via Monte Carlo radiative transfer (Bethell & Bergin 2011a):
 - **Continuum opacity** \rightarrow dust extinction.
 - **Line** RT \rightarrow Ly- α H-scattering + dust.
 - H vs. H2 surface calculated using the prescription detailed in Spaans & Neufeld 1997.

Model Radiative Transfer: Stellar X-rays

X-ray scattering with cross sections from Bethell & Bergin 2011b.

H_+He only

gas+dust

Dust

1.0

Energy [keV]

gãs

dust

0.1

8

error

o∕H ∗ E³ [10⁻²⁴ cm² keV³]

-5 -10

100

10

1000

Includes contributions from k & I-shell ionization cross-sections from both dust and gas components.

Model: The Chemical Network

- Fogel et al. 2011 chemical network,
 6084 reactions & 646 species.
 - Reactions included: photo-chemistry, UV/X-ray/CR ionization, ionchemistry, neutral-neutral, CO and H2 self-shielding and more.
- Now with a simple grain chemical network (~30 reactions).
 - Motivated by Hasegawa, Herbst & Leung 1992, Garrod & Pauly 2011.
 - Tested under dark cloud conditions: I0K; n ~ 2x10⁴ cm⁻³.

Modeling Results

Chemical Results: 1) X-ray Desorption

No X-ray thermal desorption

Chemical Results: 1) X-ray Desorption

X-ray thermal desorption

Chemical Results: 1) X-ray Desorption

- More water? We presumably remove oxygen from the grains, inhibiting water formation, so where is this excess originating?
- Reason: X-rays remove O, but that isn't all: NH₃, CO and C are simultaneously desorbed efficiently.
- Newly desorbed CO photo-dissociates, enhancing the gas-phase atomic oxygen content, pushing the system to form *more* water, rather than less.

Chemical Results: 2) Carbon-'goo'

Without 'goo' effects

Chemical Results: 2) Carbon-'goo'

Reduced H₂O UV-desorption efficiency due to carbon ices.

Results: Molecular Emission

Using the non-LTE code LIME (Line Modeling Engine, Brinch & Hogerheijde 2010)

- Adding the more robust grain network helps reduce the H₂O problem
- H₂CO consistently too strong likely the result of an incomplete grain network.
- Model assumes $T_{gas} = T_{dust} \rightarrow$ but goo heads in right direction.
- Not including UV ice-photodissociation (more frequent) rather than pure desorption (e.g. H2CO(gr) + hv \rightarrow HCO(gr) + H).

	o-H ₂ O 1 ₁₀ – 1 ₀₁	p-H ₂ CO 3 ₀₃ – 2 ₀₂	o-H ₂ CO 4 ₁₄ – 3 ₁₃	CO 2 – 1
	(mK km/s)	(Jy km/s)	(Jy km/s)	(Jy km/s)
Observed	16[2]	0.35[0.03]	0.29[0.11]	14.87[0.12]
Original Model	28.1	0.7	0.5	22.7
Grain Chemistry	22.7	7.2	5.1	22.5
Grain + Goo	18.3	4.5	2.1	22.5

Conclusions + The Future

- X-ray desorption adds CO → C + O → H₂O:
 more water, not less.
- More sophisticated grain chemistry is important: competition for hydrogenation.
- Reduced UV photo-desorption yield of H₂O due to goo is a potential solution to the missing cold water.
- H₂CO grain/photo-chemistry likely incomplete.
- H₂O collision rates perhaps overestimated <50K? (Dick et al. 2010)</p>
- Models: different fits to same SED and T_g ≠ T_d.
 Explore different/more sophisticated models.
- Resolved observations with ALMA of carbonices can be used to test the 'goo' scenario.
- Herschel OT2 \rightarrow Catch H₂O in absorption!

