

Planet-forming Circumstellar Discs

Modelling

Peter Woitke

St. Andrews University School of Physics & Astronomy peter woitke@st-andrews.ac.uk

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

The GASPS modelling team

St Anarews: Peter Woltke	St	Andrews:	Peter	Woitke
--------------------------	----	----------	-------	--------

- Groningen: Inga Kamp, Giambatista Aresu, Rowin Meijerink, Marco Spaans
- Grenoble: Wing-Fai Thi, Francois Ménard, Christophe Pinte, Gaspard Duchêne

Edinburgh: Ian Tilling

Thanks to: Uma Gorti, Simon Bruderer, Dmitry Semenov Edwin Bergin, Hideko Nomura, ...

What means (radiation) thermo-chemical disk modelling?

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Gas in Protoplanetary Disks

- \rightarrow Aresu et al. (2011, A&A 526, 163)
- application to individual targets \rightarrow 7 papers so far (2010-2012)

this conference

 \rightarrow used in 4 talks, 8 posters (!)

Chemistry

$\frac{dn_i}{dt} = \sum n_k n_l$	$_{l}R^{r}_{kl \rightarrow ij}(T_{\mathrm{gas}}) - n_{i}\sum n_{j}R^{r}_{ij \rightarrow kl}(T_{\mathrm{gas}})$	Ŧ	•••
r	r		

elements:	~ 10	e.g. H, He, C, N, O, Ne, Na, Mg, Si, S, Ar, Fe, PAHs
species:	~ 100	atoms, ions, double ions, molecules, vib. exc. H_2^{\star} , ices, PAHs
reactions:	~ 1000	gas-phase, including 3-body (UMIST 2006),
		UV-photo-reactions with detailed $\sigma(\nu)$ (Leiden database),
		2-directional self-shielding by H_2 , CO, C (various papers),
		X-ray primary and secondary (Meijerink & Glassgold 2008)
		H_2 formation of grain surfaces (e.g. Cazaux & Tielens 2010)
		H_2^{\star} chemistry (Tielens & Hollenbach 1985)
		ice formation $(H_2O^{\#}, CO^{\#}, CO_2^{\#}, CH_4^{\#},)$ (Aikawa 1996)
		(including thermal, UV-photo, and cosmic-ray desorption)
		PAH photo-ionisation, recomb. (Draine & Li 2007,)

 $\frac{dn_i}{dt} = 0 \quad \Rightarrow \quad \text{``kinetic chemical equilibrium''}$

- dependent on dust properties (total surface area, T_{dust})
- coupled to radiative transfer results (UV, X-rays)
- new: more ices, simple surface chemistry (Kamp et al. 2012, in prep.)
- **open issues:** warm and dense chemistry?

Heating & Cooling

 $\sum_{k} \Gamma_{k}(T_{\text{gas}}, n_{i}, \text{dust}) = \sum_{k} \Lambda_{k}(T_{\text{gas}}, n_{i}, \text{dust}) \implies T_{\text{gas}} \text{ "thermal balance"}$

heating	~ 60	PAH photo-ionisation heating, photo-electric heating,				
		X-ray Coulomb heating, cosmic ray heating,				
		exothermal reactions, viscous (" α ") heating,				
		coll. de-excitation of H_2^* , H_2 -formation on grains,				
		C photo-ionisation, H^- bound-free,				
		line pumping (in particular Fe II, H_2O ro-vib, CO ro-vib,)				
cooling	~ 50	thermal accomodation on grains, PAH recombination cooling,				
		Ly α , OIII (6 levels / 11 lines), MgII (8 / 12), ArII, NeII,				
		Fell semi-forbidden (120 levels / 956 lines),				
		OI (91/647), CII (10/31), CI, SiII, SI, SII, NII,				
		CO ro-vibrational (e.g. $v=0, 1, 2, J=0,, 35$),				
		$o/p-H_2$ ro-vibronic (327/342 levels, 3984/4232 lines),				
		$o/p-H_2O$ ro-vibrational (411/413 levels, 4248/3942 lines),				
		OH, SiO, NO, CS, HCN, HNC, CN, HCO ⁺ , CH ⁺ rotational,				
		¹³ CO, HD, HDO, SO, SO ₂ , OCS, $o/p-NH_3$, $p/o-H_2CO$ rot.				

- escape probibility (vertically upwards, radially inwards/outwards)
- \bullet background radiation field from continuum RT
- new: CO ro-vibronic (Thi et al. 2012 in prep., also poster)
- **open issues:** more **chem**. **pumping**? more **stellar-atmosphere-like**?

Continuum & Line Radiative Transfer

 $\frac{dI_{\nu}}{d\tau} = S_{\nu} - I_{\nu}$, dust in radiative equilibrium (+ non-rad. heating)

incident interstellar:

- far UV (Draine)
- CMB (2.7 K)
- isotrop

EITHER use ProDiMo ...

– isotropic scat. ray-based, long-char., accelerated $\Lambda\textsc{-iteration}$

OR use MCFOST (Pinte et al. 2009; Ménard's previous talk) ...

- anisotropic scattering, Monte-Carlo, diffusion solver, ...
- ray-tracing of continuum and non-LTE line transfer, for given inclination, to get simulated observations
- **open issues:** gas opacities? X-ray RT with Compton scattering?

Disc dust is special ...

(from Mie and effective medium theory, $f(a) \propto a^{-3.5}$ size distribution, gas/dust = 100)

	a_{\min}	$a_{ m max}$	carbon	$surface/H [cm^2]$	$A_V/N_H [\mathrm{cm}^2]$	$albedo_V$
ISM	$0.005\mu{ m m}$	$0.25\mu{ m m}$	25%	5.3×10^{-21}	6.9×10^{-22}	0.36
$disc_1$	$0.05\mu\mathrm{m}$	$1\mathrm{mm}$	25%	2.6×10^{-23}	$1.6 imes 10^{-23}$	0.48
$disc_2$	$0.05\mu{ m m}$	$1\mathrm{mm}$	0%	2.6×10^{-23}	1.3×10^{-23}	0.76
$disc_3$	$1\mu{ m m}$	$10\mathrm{cm}$	0%	5.9×10^{-25}	$3.5 imes 10^{-25}$	0.56

- more difficult to form H₂ (even more so if dust is settled!)
- UV penetrates much deeper than used from ISM
- unusual combinations of high densities & high UV fluxes
- be careful with any formula from ISM research!

Vertical Structure and Global Iteration

vertical:
$$\frac{1}{\rho} \frac{\partial p}{\partial z} = -\frac{z G M_{\star}}{(r^2 + z^2)^{3/2}}$$
 with $p = c_T^2 \rho$ and $c_T^2 = c_T^2(r, z)$
radial:
$$\sum(r) = \int \rho(r, z) dz \propto r^{-\epsilon}$$
 with $M_{\text{disk}} = \int 2\pi r \Sigma(r) dr$
+ inner soft edge
or any other law (holes, gaps, ...)
iterative solution:
chemistry (p) & energy balance T_{gas}
sound speeds
1+1D disk structure

Radiation thermo-chemical disc models usually have ...

- *no* magnetic fields
- *no* hydrodynamics, except ...

photoevaporation wind models

- \rightarrow Alexander, Clarke, Pringle et al. (2006 –2012);
- \rightarrow Owen, Ercolano, Clarke et al. (2009 2012)

some models run on stream-lines of disc evolution (quasi-1D), see e.g.

 \rightarrow Visser, van Dishoeck et al. (2009 – 2012), also poster by Harsono et al.

 \bullet no non-LTE beyond escape probability method, except ...

on given structure, temperatures, concentrations, etc. \rightarrow e.g. Hogerheijde et al. (2000 – 2012)

Overview of Disc Models

	RT	chemistry	X-rays	heat & cool	vert. struc.	transport & mixing
Gorti, Hollenbach et al.	*	**	\checkmark	**	***	-
Heinzeller, Normura et al.	*	***	\checkmark	**	***	*
Bruderer et al.	***	**	\checkmark	**	(fixed)	-
Semenov, Bergin et al.	*	****	\checkmark	$(T_{\mathrm{g}} = T_{\mathrm{d}})$	(fixed)	***
ProDiMo	**	**	\checkmark	***	***	-
ProDiMo & MCFOST	***	**	\checkmark	***	(fixed)	-

Gorti, Hollenbach, Najita, Pascucci (2011, ApJ 735, 90) Heinzeller, Nomura, Walsh, Millar (2011, ApJ 731, 115) Bruderer, van Dishoeck, Doty, Herczeg (2012, A&A in press) Fogel, Bethell, Bergin, Calvet, Semenov (2011, ApJ 726, 29) Woitke, Thi, Kamp, Aresu, Meijerink, Spaans (various papers 2009–2012) Pinte, Ménard, Duchêne (2006, A&A 459, 797)

Apologies, if I misread something, or missed your model!

Some remarkable results and latest tendencies ...

X-rays penetrate much deeper than UV - really?

Dust and Gas Temperature

 $L_{\star} = 0.7 L_{\odot}, T_{\text{eff}} = 4400 \text{ K}, L_{\text{UV}} = 1.4 \times 10^{31} \text{ erg/s}, L_X = 10^{30} \text{ erg/s}$

T Tauri type: r = (0.1-300) AU, rad. exponent $\epsilon = -1$, scale height $H_0 = 1$ AU @ 10 AU, flaring $\beta = 1.1$ $M_{\text{gas}} = 10^{-2} M_{\odot}$, dust/gas = 0.01, astro. sil. ($a = 0.05 \,\mu\text{m} - 1 \,\text{mm}$, p = -3.5), $f_{\text{PAH}} = 0.01$

dust temperature

gas temperature

Density Structure

Woitke, Kamp & Thi (2009, A&A 501, 383); Thi, Woitke, Kamp (2011, MNRAS 412, 711)

Do the models agree?

- well, of course they don't what did you expect?
- but qualitatively, they often do!
- different disc parameters, different understanding of parameters, different approximations, different numerics, ...
 - \rightarrow need for a disc modelling **benchmark**?
 - \rightarrow poster (Thi, Bruderer et al.) on HD 141569A

Enhancement of Ly α in disc geometry

- resonance scattering of Ly α in teneous disc surface leads to amplification of photo-dissociation in discs
- selective destruction of HCN, NH $_3$, and CH $_4$, which have 1216Å photo-cosssections > 0
- enhancement of CO, CN, and SO

Bethell & Bergin (2011, ApJ 739, 11) Fogel, Bethell, Bergin, Calvet, Semenov (2011, ApJ 726, 29)

Using optical-sub-mm lines to constrain the distribution of gas

Gorti, Hollenbach, Najita, Pascucci (2011, ApJ 735, 90)

 \rightarrow related posters about H₂ near/mid IR, [NeII] 12.8 μ m, ro-vib CO and OH (Carmona et al., Thi et al., Liskowsy et al.)

Recent modelling "trends"

- merging radiative transfer ↔ chemistry (Bruderer et al., Woitke et al.)
- believe in results from gas energy balance $T_{\rm gas} = T_{\rm dust}$ -models can't explain the Herschel results (Gorti et al., Bruderer et al., Nomura et al., Woitke et al.)
- include X-rays, merge PDR and XDR physics and chemistry (all)
- investigate more complicated disc shapes, such as inner holes, gaps, zones with different scale heights, puffed-up inner rim, etc. (Gorti et al., Woitke et al., Pinte et al.)
- use multi-wavelength line data, from optical to mm (Gorti et al., Woitke et al.)
- try to fit dust and gas observations at the same time (Woitke et al., see also poster by Pinte et al.)
- use dust properties & settling from dust evolution models (e.g. Pinte et al.)

Important results from Herschel

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Where do the emission lines come from?

HD 100546: analysis of PACS/DIGIT data

Bruderer, van Dishoeck, Doty, Herczeg (2012, A&A in press), \rightarrow Simon's talk soon

HD 163296: analysis of PACS/GASPS data

HD 169142: analysis of PACS/GASPS data

ET Cha: analysis of multi- λ data

Herschel Water Lines I

Riviere-Marichalar et al. (2012, A&A 538, also poster)

BUT: Herschel/HIFI (WISH) found no water in discs, except in TW Hya (tiny fluxes for fundamental lines at 269.27μm and 538.29μm) E. van Dishoeck's talk; Hogerheijde et al. (2011, Science 334, 338)

Herschel Water Lines II

Too much water

ice-free grains?

• gas/dust ratio?

vield?

• surface chemistry?

• metal abundances

• UV photo-desorption

(Na, Mg, Si, S, Fe)?

• settling of large icy grains below small

(Hogerheijde, previous talk)

 \rightarrow poster by Kamp et al., this conference

TW Hya: analysis of Herschel data

$$\begin{split} M_{\star} &= 0.6 \ M_{\odot}, \ \text{age} = 10 \ \text{Myr}, \\ T_{\text{eff}} &= 4000 \ \text{K}, \ L_{\star} = 0.23 \ L_{\odot}, \\ \text{inner disk: } 0.25 - 4 \ \text{AU}, \\ \text{outer disk: } 4 - 200 \ \text{AU}, \\ \text{dust: } 0.03 \ \mu\text{m} - 10 \ \text{cm}(!), \\ M_{\text{dust}} &\approx 0.0002 \ M_{\odot}, \\ M_{\text{gas}} &= (0.005 - 0.05) M_{\odot}, \ (0.003^b) \\ \text{gas/dust} &= 3 - 26 \end{split}$$

	observed	\mathbf{model}			
$[OI] 63 \mu m$	36.5 ± 4	$\approx 85^{b}$			
$\rm CO18 \rightarrow 17$	3.5 ± 1.2	$pprox 0.33^b$			
$CO 3 \rightarrow 2$	0.43 ± 0.13	$pprox 0.41^b$			
$^{13}\mathrm{CO}3 \rightarrow 2$	0.044 ± 0.013	$\approx 0.084^{b}$			
$H_2O538\mu\mathrm{m}$	$mpprox {f 0.22}^a$	$pprox 0.32^b$			
$H_2O269\mu m$	$mpprox {f 0.29}^a$	$pprox 0.79^b$			
$H_2O 89.9 \mu m$	5.6 ± 0.9^{b}	$pprox 0.53^b$			
line fluxes in $[10^{-18} \mathrm{W/m^2}]$					

Thi, Mathews, Ménard, Woitke et al. (2010) ^{*a*}: Hogerheijde et al. (2011, Science 334, 338) ^{*b*}: Kamp et al. (2012, A&A in prep. \rightarrow see poster)

Bad things (major uncertainties)

- dust properties uncertain, and probably varying throughout disc
- PAH size and abundance uncertain, and probably varying throughout disc
- H₂-formation rate on dust uncertain
- turbulence and degree of dust settling uncertain
 → poster by Mulders & Dominik, this conference
- PDR and XDR physics uncertain for high densities $\gtrsim 10^{10} \, {\rm cm}^{-3}$ \rightarrow planetary atmosphere physics & chemistry

Good things

- X-ray and UV irradiation directly measurable
- disk shape characterizable through SED & image modelling
- non-LTE often not so crucial

Analysis and Modelling of Multi-wavelength Observational Data from Protoplanetary Discs

FP7-SPACE-2011 project DiscAnalysis ("DIANA") Coordinator: Dr. Peter Woitke

 \star EU-funded with 2 Mio Euro altogether

 \star 1 academic, 3 PhD-students, 3 post-doc positions

★ in 5 places in Europe: St Andrews (UK), Vienna (AT), Groningen (NL), Amsterdam (NL) and Grenoble (FR)
★ for 51 months: 1.1.2012 - 31.3.2016