PACS Survey of Proto-planetary disks in Taurus/Auriga: Investigating the source of [OI]63 μ m emission

Christian D. Howard

SOFIA-USRA, NASA Ames Research Center

Göran Sandell - SOFIA-USRA, NASA Ames Research Center William Vacca - SOFIA-USRA, NASA Ames Research Center Gwendolyn Meeus - Universidad Autonoma de Madrid Geoffrey Mathews - Institute for Astronomy (IfA), University of Hawaii Inga Kamp - Kapteyn Astronomical Institute Francois Ménard - UJF-Grenoble 1 / CNRS-INSU Pablo Riviere - Centro de Astrobiología – Depto. Astrofísica (CSIC–INTA) Linda Podio - UJF-Grenoble 1 / CNRS-INSU Silvia Vicente - Kapteyn Astronomical Institute Wing Fai Thi - UJF-Grenoble 1 / CNRS-INSU Jonathan Williams - Institute for Astronomy (IfA) , University of Hawaii Aki Roberge – Exoplanets and Stellar Astrophysics Lab, NASA Goddard Space Flight Center

Bill Dent - ALMA SCO Carol Grady - Eureka Scientific

and the GASPS team

Grenoble, 22 March 2012

<u>GAS</u> in <u>Protoplanetary</u> <u>Systems</u>

 Systematic survey of atomic and molecular gas and dust in ~300 disks over range of masses, ages, and stellar types

* Evolution of gas and dust in disks ~1-30Myr
 * Gas structure

* Timescales of disk mass dispersal and broad overview of the transition from molecular to atomic to dusty composition

<u>Taurus Sample</u>

- * Spectral types: Early G to early M
- * Primarily class II sources
- * Roughly coeval population (~1-3 Myr)
- Largest sample in GASPS project
 * ~70 linespec observations
 - * ~40 rangespec observations
 - * ~90 Photometry observations (70, 100, 160 μ m)

PACS Spectroscopy

Winter 2010 – Fall 2011 LineSpec: 76 targets observed (1.25 – 7 ksec.) RangeSpec: 38 targets observed (5-20 ksec.)

Obs. Mode	Setting	Grating order	Camera	Observed Range (μm)	Species	Transition	$\frac{\text{Wavelength}}{(\mu \text{m})}$
LineSpec	Α	3	Blue	62.68 - 63.68	[OI]	${}^{3}P_{1} \rightarrow {}^{3}P_{2}$	63.184
		1	Red	188.77 - 190.30	DCO^+	J=22-21	189.570
RangeSpec	В	2	Blue	72.00 - 73.05	CH ⁺ CO	J=5-4 J=36-35	72.14 72.843
		1	Red	144 - 146.1	CO [OI]	J=18-17 ³ Po \rightarrow ³ P1	144.784 145.525
	С	2	Blue	78.55 - 79.45	o-H ₂ O OH CO	$4_{23} \rightarrow 3_{12}$ 1/2-3/2 hfs J33-32	78.741 79.11/79.18 79.360
		1	Red	157.1 - 158.9	[CII] p-H ₂ O	$\begin{array}{c} {}^{2}\mathrm{P}_{3/2} \rightarrow {}^{2}\mathrm{P}_{1/2} \\ {}^{3_{31}} \rightarrow {}^{4_{04}} \end{array}$	157.741 158.309
	D	2	Blue	89.45 - 90.50	p-H ₂ O CH+ CO	$3_{22} \rightarrow 2_{11}$ J=4-3 J=29-28	89.988 90.02 90.163
		1	Red	178.9 - 181.0	o-H ₂ O CH+ o-H ₂ O	$\begin{array}{c} 3-25 & 25\\ 2_{12} \rightarrow 1_{01}\\ J=2-1\\ 2_{21} \rightarrow 2_{12} \end{array}$	$ 179.527 \\ 179.610 \\ 180.488 $

•O-H₂O Riviere-Marichalar et al., A&A 538 L3 (2012) •Podio et al. 2012, in prep.

* [OI] 63 strongest FIR line in the PACS range

- * Primary cooling line in protoplanetary disks
- * Traces warm surface layer of the disk down to $A_v \sim 3$
- Additional measurement of [OI]145 & [CII]158 can yield information on temperature, density, characteristics of emission region

Measurement of [OI] can constrain current models of disk structure:
What is gas/dust structure/location?
Gas/Dust ratio?
Gas & dust coupled?

Observations

Line Sensitivities: ~ 0.5 – 10⁻¹⁷ W m⁻² Continuum Sensitivities: ~100 mJy, better in photometry [OI]63 : 52/76 (68%) [OI]145 : 21/38 (55%) [CII]158 : 18/38 (47%)

[OI] 63 vs. 63 μ m Continuum

•Tight correlation between [OI]63 line emission and 63 μ m continuum flux for nonoutflow sources

•The [OI] 63μ m line emission in outflow sources is dominated by the outflow, and can be up to 15 times stronger than the emission from the disk. Several outflow sources show extended [OI] (Podio et al. 2012, in prep)

•Known transition disks are ~2x lower in [OI]63 flux compared to classical T Tauri disks

No correlation with disk mass (as expected): •[OI]63 probes only surface layer •Bulk of 63 μ m continuum comes from the warm the inner ~20 AU of the disk

No correlation with accretion rate
No correlation with x-ray luminosity (see poster by Giambattista Aresu)

[OI]63 emission origin

 Bulk of 63 μ m continuum emission comes from inner ~20 AU of disk

* Correlation suggests the [OI] 63 line primarily probes the same region of the disk (along with some contribution from the outer disk).

However....

[OI]63 emission origin

[OI]63 emissivity peaks at R < 20 AU, Xray only (Meijerink, Glasgold, & Najita 2008).

Other models show > 50% of [OI]63 coming from R > 30 AU, UV only

0.8

0.6

0.4

0.2

0.0

Z/R

[OI] 63 / [OI] 145

[OI] 63 / [CII] 158

PDR Emission?

Liseau et al. 2006

T > ~200 K, n < 10⁴, optically thin emission, <u>if</u> emission comes from the same region

Ongoing Work

• Contraints on the models (DENT grid, see Woitke et al. 2010MNRAS, astro-ph/1003.2323, 2010)

• gas/dust ratio, UV flux, disk geometry, etc.

•Source of [OI]63 emission: majority of [OI]63 coming from inner ~20 AU (as observations suggest) or from further out in the disk (as models show)?

•Emission optically thin or thick?

* In strong outflow sources the emission from the outflow dominates the line intensity.

- * Strong correlation with 63 μ m continuum. Bulk of [OI]63 emission from the same region as continuum
- * Known transition disks show a deficit of [OI]63 emission compared to classical T Tauri disks
- For sources with [OI]63, [OI]145, and [CII]158 detection, we find line ratios of ~10 – 20 (all outflow sources)
 - Suggests optically thin emission with T~200 K and n <10⁴ PDR dominated?