Herschel Observations of Protoplanetary Disks

Jonathan Williams University of Hawaii

Herschel2012: "From atoms to pebbles", Grenoble 3/22/12

All stars form surrounded by disks, and at least some disks truly are protoplanetary!

Disks are not like the ISM!

At the snow line, local conditions are

such that the drag force reverses

3

Disk of gas and dust

How to make giant planets

- Grow dust, $\mu m \rightarrow km$, in presence of gas...
- build ~10M_{Earth} cores for runaway accretion...
- while still having >IM_{Jup} of gas to make giant planets...
- then disperse gas quickly!

Kepler's new law

~1000 / 150000 stars have planetary candidates (Borucki+ 2011)

Planets are very common...

... and with a huge diversity

•••• Initial conditions?

•••• Disk evolution?

•••• Stochastics?

Millimeter wavelength observations can measure *dust masses* of grains up to few mm in size, and show the *capacity* for planet formation, but are fairly insensitive (for now...)

Andrews & Williams 2005, 2007 Mann & Williams 2009 Lee+ 2011 Mathews+ 2012

Dust and Gas Structures

Dullemond+ 2005

Temperature structure

Temperature structure

Spectral lines show the gas at the same *approximate* radius

Note: these are global measures

Spitzer and singledish millimeter observations only measure the *total* (spatially unresolved) disk continuum.

Similarly, Herschel does not resolve the disks spatially, or spectrally.

Model fits to the data may not be unique!

PACS spectral resolution $\lambda/\Delta\lambda \sim 1000-4000$

 $\Rightarrow \Delta v \sim 88$ km/s at 63µm $>> \Delta v_{disk} \sim 10$ km/s (need HIFI)

(and watch out for the outflows)

PACS line and continuum are unresolved

Detailed modeling is required, and ambiguities remain (see Peter Woitke talk this afternoon)

The DENT grid of disk models

Woitke+ 2009

Inga Kamp

Herschel protoplanetary disk programmes

- GASPS (Gas in Protoplanetary Systems)
- DIGIT (Dust, Ice, and Gas In Time)
- WISH (Water In Star forming regions with Herschel)
- + several individual programs

Herschel protoplanetary disk programmes

- GASPS (Gas in Protoplanetary Systems)
- DIGIT (Dust, Ice, and Gas In Time)
- WISH (Water In Star forming regions with Herschel)
- + several individual programs

- PACS 70/110/170µm photometry
- [OI]63/145µm, [CII]158µm, CO, H₂O, OH
- Class II / III / debris disks
- Nearby (<150pc), range of ages 1-30Myr
 - **★** Taurus, Cha II, Upper Sco, ηCha, βPic, TW Hya, TucHor
- T Tauri and Herbig Ae/Be stars

The GASPS Team

Sean Andrews David Ardila Giambattista Aresu Jean-Charles Augereau David Barrado Navascues Sean Brittain Nahuel Cabral Andres Carmona David Ciardi Bill Dent (PI) Jessica Donaldson **Gaspard Duchene** Carlos Eiroa Davide Fedele Carol Grady Itziar de Gregorio-Monsalvo Ana Heras **Christian Howard**

Nuria Huelamo Inga Kamp Alexander Krivov Jeremy Lebreton Rene Liseau Claire Martin-Zaidi Geoff Mathews **Francois Menard** Pablo Riviere Marichalar **Gwendolyn Meeus** Ignacio Mendigutia **Benjamin Montesinos** Alcione Mora Maria Morales-Calderon Hideko Nomura Eric Pantin Ilaria Pascucci **Neil Phillips**

Christophe Pinte Linda Podio **Dieter Poelman** Suzie Ramsay Aki Roberge Veronica Roccatagliata Lara Rodrigues **Goeran Sandell Enrique Solano** Wing-Fai Thi Ian Tilling Bart Vandenbussche Silvia Vicente Helen Walker Jonathan Williams **Glenn White** Peter Woitke

SED evolution

Geoff Mathews

Detected lines

- **[OI] 63µm**, 145µm
- [CII] 158µm
- H₂O 8 lines, E_{up}=115-1300 K
- CO 4 lines, J=18-17 to J=36-35
- OH, CH⁺

 $(F_{63}/F_{145} > 10)$

(envelope contamination?)

(mainly TTS, not HAeBe)

(warm disk atmosphere)

(two HAeBes only)

Detection statistics

Detection statistics

Detection statistics

Detection limits

[OI]63 μ m correlates with gas mass, but with *an order of magnitude* dispersion Survey mass sensitivity is ~I M_{Jup}

Detection limits

[OI]63 μ m correlates with gas mass, but with *an order of magnitude* dispersion Survey mass sensitivity is ~I M_{Jup}

Determining gas masses

Kamp+ 2011

The more lines the better...

I.2mm continuum, CO, ¹³CO, C¹⁸O <u>SMA</u> <u>Reconnaissance of Taurus</u>

Individual regions/sources

- Taurus (see Christian Howard's talk)
- transitional disks (see Francois Menard's talk)
- detailed modeling of individual sources
 - dust/gas ratio
 - warm H_2O
 - ▶ C⁺, CO, OH, CH⁺

Warm water in disks

The 63.32µm water line

The H₂O 63.3µm line is seen in 8 TTauri disks but only I HAeBe

The 63.32µm water line

The H₂O 63.3µm line is seen in 8 TTauri disks but only I HAeBe

DIGIT

- PACS and some SPIRE photometry
- full PACS spectroscopy 52-210µm
- embedded protostars and protoplanetary disks
- Close (<350pc), young (~I Myr) regions
 - ★ Taurus, Ophiuchus, Cha, Perseus, Serpens, Lupus

The DIGIT Team

Jean-Charles Augereau Ted Bergin Geoff Blake Jeroen Bouwman John Carr Lucas Cieza Carsten Dominik **Cornelis Dullemond** Neal J. Evans II (PI) Al Glassgold Manuel Guedel Paul Harvey **Thomas Henning** Michiel Hogerheijde Dan Jaffe Jes Jørgensen

Simon Bruderer John Lacy Jeong-Eun Lee Sebastien Maret Bruno Merin Lee Mundy Joan Najita Klaus Pontoppidan Ewine van Dishoeck Christoffel Waelkens **Rens Waters Ruud Visser** Umut A. Yildiz **Odysseas Dionatos** Lars Kristensen Koen Maaskant

Joel Green **Gwendolyn Meeus** Bram Acke **Rowin Meijerink** Joanna Brown **Greg Herczeg** Tim van Kempen Mate Adamkovics **Colette Salyk** Jo-hsin Chen Mike Dunham Hyo-Jeong Kim Johan Olofsson **Bernhard Sturm** Ke Zhang **Gijs Mulders**

Some DIGIT disk highlights

(reviewed yesterday by Bouwman)

- Forsterite 69µm feature (Mulders)
- Warm disk atmospheres (Bruderer)
- WTTS structure

The transition from protoplanetary to planetary debris

Williams & Cieza 2011

The transition from protoplanetary to planetary debris

Williams & Cieza 2011

PACS/SPIRE photometry of WTTS new constraints on outer disk structure

T Cha: a planet forming disk?

T Cha: a planet forming disk?

Transition disks caused by planets are great candidates for direct imaging

Disks ···· Planets

Kraus & Ireland 2012

Merci ESA!

Herschel Observations of Protoplanetary Disks

- Herschel spectra reveals the gas in the gas giant planet forming zone of disks!
- Herschel photometry constrains dust properties and disk structure in the outer parts of protoplanetary disks
- Mgas > IMJup for >40% of Class II disks in Taurus and Cha II (~I-3 Myr)
- dust/gas ratio varies by (at least) an order of magnitude
- warm H₂O from disk surface at R~ few AU is found in many T Tauri disks
- disks are diverse...

...how does this relate to the diversity of exoplanets?