The Herschel Orion Protostar Survey (HOPS): A Multi-Observatory Survey of Protostars in the Orion Molecular Clouds

Tom Megeath (U. Toledo)
Will Fischer (U. Toledo)
Babar Ali (NHSC)
Thomas Stanke (ESO)
Amy Stutz (MPIA)

John Tobin (NRAO)
P. Manoj (Rochester)
Roland Vavrek (ESA)
Thomas Henning (MPIA)
James DiFrancesco (NRC)
and the HOPS team

Blue: Spitzer 3.6 micron
Green: PACS 70 micron
Red: PACS 160 micron
HOPS: Herschel Orion Protostar Survey

- PACS imaging: 298 protostars at a common distance and in a variety of environments
 - Spitzer-identified protostars down to $\sim 0.2 L_{\odot}$
 - 70 and 160 µm
 - 114 fields of 5’ to 8’
 - Medium (20”/s) scan rate

- PACS range spectroscopy of 33 protostars (see P. Manoj Poster!!!)

And........
- Spitzer imaging + spectra
- Hubble and ground based near-IR imaging + spectra
- Ground-based sub-mm data
The conversion of cores to stars occurs in the protostellar phase. In this phase, the basic properties of stars are determined. We need a detailed understanding of protostellar evolution!

\[b = L_\star + L_\text{flare} + \frac{GM_\star}{r} \]
Goals of HOPS

• Dependence of Protostellar Properties on “Environment”
 - Properties of surrounding core (this talk)
 - Presence of binary or cluster
 - Properties of parental filament (poster by T. Stanke)

• Auditing infall and outflow
 - Infall estimated from SED
 - Outflow from PACS spectroscopy and ground-based data (poster by P. Manoj)

• Providing definitive data set for testing models of protostellar evolution (this talk and Amy Stutz’s talk)
 - Understand connection between evolution and environment due to feedback (this talk).
The HOPS Model Grid (John Tobin)

- Generated with Whitney Monte-Carlo code
- 3600 models viewed from 10 angles - giving 36000 SEDs
- Vary envelope density, outflow cavity angle, centrifugal flattening, luminosity.
T_{bol} (Bolometric Temperature: temperature of a blackbody with the same mean frequency of the protostar)

- T_{bol} is intended to track envelope evolution
- Can be skewed upward by scattered light
- With model, count only the thermal emission

$\log \left[\lambda F_{\lambda} \text{ (erg s}^{-1} \text{ cm}^{-2}) \right]$

λ (μm)

$T_{\text{bol}} = 465$ K
$T_{\text{bol}} = 328$ K

$T_{\text{bol}} = 106$ K
$T_{\text{bol}} = 52$ K

$T_{\text{bol}} = 106$ K
$T_{\text{bol}} = 52$ K

$T_{\text{bol}} = 94$ K
$T_{\text{bol}} = 68$ K

$T_{\text{bol}} = 66$ K
$T_{\text{bol}} = 57$ K

$T_{\text{bol}} = 54$ K
$T_{\text{bol}} = 53$ K
Tracing Protostellar Evolution with Bolometric Temperature

Bolometric Temperature vs Luminosity Plot for 298 Protostars
Tracing Protostellar Evolution with Bolometric Temperature

Is this the HR diagram for protostars?

Class 0 < 70 K
Early Class I = 70 - 215 K
Late Class I = 215 - 650 K
What is the effect of inclination on the bolometric temperature?

Protostars are not spherically symmetric objects!

HOPS 136: NICMOS at 1.6 and 2.05 micron
What is the effect of inclination on the bolometric temperature?

HOPS 136: NICMOS at 1.6 and 2.05 micron
What is the effect of inclination on the bolometric temperature?

- Inc. = 18°,
 - Tbol = 606 K

- Inc. = 81°,
 - Tbol = 67 K

- Inc. = 57°,
 - Tbol = 371 K

Red: Thermal emission
Blue: Thermal+Scattered

HOPS 136: NICMOS at 1.6 and 2.05 micron
What is the effect of inclination on the bolometric temperature?

- Inc. = 18°
 • Tbol = 606 K

- Inc. = 81°
 • Tbol = 67 K

- Inc. = 57°
 • Tbol = 371 K

Inclination averaged bolometric temperature is <Tbol> = 393 K

Red: Thermal emission
Blue: Thermal+Scattered

HOPS 136: NICMOS at 1.6 and 2.05 micron
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

Tbol
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

Fit model and use T_{bol} averaged over 10 inclinations: $<T_{bol}>$

Many Class 0 objects may be highly inclined Class I sources
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

Evolution

Class 0

Early Class I

Late Class I

L_sun vs. $<T_{bol}>$ (angle averaged)
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

Model grid calculated by John Tobin
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

- Lower inner envelope density
- Larger outflow cavity
- Model grid calculated by John Tobin

![Graph showing density vs. cavity angle](image-url)
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

Number = 155
<inc> = 62°
Median Lsun = 2.5
<Mdot> = 1 \times 10^{-5} M_{\odot} yr^{-1}
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

Number = 155
<inc> = 62°
Median L$_{\text{sun}}$ = 2.5
<Mdot> = 1×10^{-5} M$_{\text{sun}}$ yr$^{-1}$

Number = 123
<inc> = 61°
Median L$_{\text{sun}}$ = 2.4
<Mdot> = 4×10^{-5} M$_{\text{sun}}$ yr$^{-1}$
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

Number = 155
<inc> = 62°
Median Lsun = 2.5
<Mdot> = 1 x 10^{-5} M_{\odot} yr^{-1}

Number = 123
<inc> = 61°
Median Lsun = 2.4
<Mdot> = 4 x 10^{-5} M_{\odot} yr^{-1}

Number = 27
<Inc> = 30°
Median Lsun = 2.5
<Mdot> = 2 x 10^{-4} M_{\odot} yr^{-1}
Tracing Protostellar Evolution with Inclination Averaged Bolometric Temperature

- Large spread in luminosities at all $<T_{bol}>$
- Median luminosity is very constant
- \dot{M} decreasing with increasing $<T_{bol}>$
- The higher inclination red objects are missing: see Amy Stutz talk.

Number = 155
<inc> = 62$^\circ$
Median Lsun = 2.5
$\langle \dot{M} \rangle = 1 \times 10^{-5} \, M_{\odot} \, yr^{-1}$

Number = 123
<inc> = 61$^\circ$
Median Lsun = 2.4
$\langle \dot{M} \rangle = 4 \times 10^{-5} \, M_{\odot} \, yr^{-1}$

Number = 27
<inc> = 30$^\circ$
Median Lsun = 2.5
$\langle \dot{M} \rangle = 2 \times 10^{-4} \, M_{\odot} \, yr^{-1}$
Connecting Protostellar Evolution with “Environment”

Red dots: Spitzer identified protostars

Greyscale: LABOCA 850 micron

Used LABOCA and Herschel PACS 160 micron data to find temperature and column densities.

L1641 South: wide spacing, weak 850 micron emission

OMC 2/3: close spacing, strong 850 micron emission
Connecting Protostellar Evolution with “Environment”

Red dots: Spitzer identified protostars

Greyscale: LABOCA 850 micron

Used LABOCA and Herschel PACS 160 micron data to find temperature and column densities.

Spacing inversely proportional to gas column density - consistent with Jeans fragmentation: see Thomas Stanke Poster
Luminosity vs Column Density

L_{\text{sun}} = k \ N(H_2)^{1.5}

Approximately consistent with Mdot = Mass/t_{\text{ff}}
Luminosity vs Column Density

Evolution

This shows a clearing of the surrounding gas with increasing $\langle T_{bol} \rangle$, probably the result of feedback.
Summary

Presented a preliminary examination of indicators of evolution

• Tbol is strongly affected by inclination

• Inclination averaged Tbol, $<\text{Tbol}>$, a much better indicator of evolution
 • $<\text{Tbol}>$ decreases as envelope density decreases and cavity opening angle increases.
 • Caution: much more model dependent.

• Wide spread in luminosities at all $<\text{Tbol}>$

• Median luminosity constant with $<\text{Tbol}>$

• Higher inclination Class0 objects not detected with Spitzer (see Amy Stutz talk)

• We find that for the reddest objects, the Luminosity $= k \ N(\text{H}_2)^{1.5}$

• For a given luminosity - gas column density decreases with increasing $<\text{Tbol}>$

Posters by Thomas Stanke and P. Manoj