Constraining the Physical Structure and Dust Opacities Towards B335

Yancy L. Shirley

B335 – A Detailed Example

- B335 is a Bok globule harboring a single deeply embedded Class 0 protostar
- Molecular lines show collapse signature
- Physical parameters
 - Distance 100 150 pc
 - Outflow in E-W directio
 - estimated age of < 10⁵ yrs
 - Slow rotation across core
 - Mass of dense core ~ 1 M_{sun}
 - Luminosity ~ 2 L_{sun}

ARA (orcmin)

 An excellent test object for theories of isolated low-mass star formation

B335 – Dust & Gas Modeling DO NOT AGREE

Best fit gas infall profile does NOT fit dust continuum

Shirley et al. 2002, Evans et al. 2005, Doty et al. 2010

B335 – Best-fit Dust Continuum Model

Shirley et al. 2011b

Herschel/Spitzer Observations of B335

Courtesy Amy Stutz, Ralf Launhardt,, Oliver Krause; Stutz et al., in prep.

B335 Far-IR Herschel SED

Courtesy DIGIT Team from Evans, Lee, et al.

B335 – Problems w/ the dust model

 Smooth transition observed in dust intensity slope from 160 μm to 850 μm

 Illustrates need for inclusion of disk/inner envelope opacity variations which can only be probed with interferometer

Stutz et al. / Shirley et al. in prep.

Theoretical Dust Opacity Curves

Shirley et al. 2005

Constraints on opacity ratio

Submm Intensity

Planck-weighted

The importance of using T(r)

Submm/NIR Opacity ratio

Constraints on opacity ratio

Shirley et al. 2011b

Submm/NIR Opacity ratio

Constraints on κ_{ν} & β

Submm Opacity

SPIRE Constraints on $\kappa_v \& \beta$

Submm/NIR Opacity ratio

Evidence for $\beta > 2$??

Theoretical Evidence for β > 2 ??

Boudet et al. 2005

Theoretical Evidence for β > 2 ??

Have we tamed submm Opacities ? observer

submm opacities

Not yet...

Conclusions/Future Work

- Observe B335 envelope β at 350 μ m 850 μ m that is > 2.0. This is consistent with recent reports of inverse β - T_d dependence, Schnee et al. 2009 starless core modeling, and solid state predictions.
- Kappa 850 μm consistent with OH5 opacities, but problems with OH opacities shape in far-IR and with β
- Requires interferometric multi- λ obs (ALMA) to disentangle opacity variations in disk + envelope emission.

