Feedback from low-mass protostars

Some like it hot!

Lars E. Kristensen

E. van Dishoeck, R.Visser, G. Herczeg, A. Karska, U.A.Yildiz, S. Bruderer, J. Jørgensen, E. Bergin, S. Doty The WISH team

Low-mass YSO evolution

Components: outflow and envelope (maybe disk) Not very hot gas...

Warm and hot CO

- Surprise from PACS: highly excited CO in low-mass protostars
- J_{up}~47 (E_{up}~6000 K)
- Reservoir of hot gas around low-mass YSOs
- Physical origin of hot gas? Location? Trends?

Physical processes

Jet w. internal working surfaces 104 Wind-induced shell shocks **10**³ UV-heating of cavity walls Disk 102 Outflow (entrained) Passively heated envelope 10

Disentangling the origin challenging

Line vs. continuum

 Highly excited H₂O, CO and [O I] lines spatially offset from continuum: shock origin - not disk!

H₂O HIFI observations

- H₂O profiles remain constant with excitation
- H₂O traces currently shocked gas

Kristensen et al. (2010) Bjerkeli et al. (2011) Santangelo et al. (2012) Vasta et al. (2012)

Velocity (km/s)

D ~ 230 pc

Kristensen et al. in prep.

H₂O and CO comparison

- H₂O and CO 16-15 profiles remarkably similar
- Disentangling physical origin through line profiles
- CO 16-15 emission primarily originating in currently shocked gas

(Kristensen et al. in prep.) For more on UV-heated cavity walls: see poster by Yildiz et al. + Yildiz et al. 2012 (in press)

H₂O and CO comparison

CO

- H₂O and CO 16-15 profiles remarkably similar
- Disentangling physical origin through line profiles
- CO 16-15 emission primarily originating in currently shocked gas

(Kristensen et al. in prep.) For more on UV-heated cavity walls: see poster by Yildiz et al. + Yildiz et al. 2012 (in press)

Where are the shocks (and the H₂O)?

H₂O excitation

- Evolution explains why H₂O was not detected in Class I sources with Odin, SWAS (Ashby et al. 2000)
- H₂O sub-thermally excited $(n_{crit} \sim 10^8 \text{ cm}^{-3}; Dubernet et al. 2006)$
- Emission ~ $n(H_2) \times N(H_2O)$
- H₂O excitation follows envelope density

H₂O profile evolution

- Class 0: EHV gas (jet shocks), very broad, inverse P-Cygni profiles
- Class I: regular P-Cygni profile (expansion), narrower outflow profile
- Quantitative differences between profiles

(Dynamics: poster by Mottram et al.) (Possible scenario: poster by Yvart et al.)

Kristensen et al. in press

H₂O as evolutionary tracer

Clear trend in components in spite of small number of sources

Evolutionary scheme

- Class 0: H₂O tightly linked to outflow, infall, molecular jet, shocks dominate H₂O and CO excitation
- Class I: envelope opens, outflow force decreases, expansion, shocks dominate H₂O excitation, UV dominates CO

(Visser et al. 2012, Kristensen et al. in press, Mottram et al. in prep.) (Poster by Mottram et al.)

Summary & conclusions

- High-J (J > 10) CO emission primarily traces currently shocked gas in protostars
- Water excitation is dominated by shocks in dense gas, both in Class 0 and I sources
- Water traces turnover from infalling to expanding envelopes ==> evolutionary tracer