

The CHESS survey of the L1157-B1 shock

Gemma Busquet (INAF-IAPS) on behalf of the CHESS outflow team

B. Lefloch, M. Benedettini, C. Codella, S. Cabrit, C. Ceccarelli,M. Vasta, S. Viti , E. Caux, J. Cernicharo, T. Giannini, A. Lorenzani,B. Nisini, K. Shuster, M. Salez, A. Gusdorf and F. Gueth

Herschel's view of Star and Planet formation

Grenoble, 20th-23th March 2012

- The LI 157 chemically rich outflow
- CHESS Observations
- Molecular content in L1157-B1
- Shock structure and comparison with models
- Summary and Conclusions

• The LII57 chemically rich outflow

• CHESS Observations

- Molecular content in L1157-B1
- Shock structure and comparison with models

Summary and Conclusions

The L1157 chemically rich outflow

The L1157 chemically rich outflow

LII57-BI is an excellent laboratory to investigate the effects and the structure of shocks on the gas chemistry

- The LI 157 chemically rich outflow
- CHESS Observations
- Molecular content in L1157-B1
- Shock structure and comparison with models
- Summary and Conclusions

CHESS Observations

PACS

68°01'00"

68°00'00"

Band	Freq. (GHz)	Lines of interest	
la	488-555	CI, HDO	
lb	555-636	CO(5-4), o-H ₂ O ₁₀ -1 ₀₁	
2a	680-700	CO(6-5)	
2b	734-754	H ₂ S, p-H ₂ O 2 ₁₁ -2 ₀₂	
4a	984-1004	p-H ₂ O 2 ₀₂ -1 ₁₁	
4b	1094-1114	o-H ₂ O 3 ₁₂ -3 ₀₃	
5a	1110-1170	CO(10-9), o-H ₂ O 3 ₂₁ -3 ₁₂	
	1150-1179		
6b	1600-1670	CO(14-13), o-H ₂ O 3 ₁₂ -1 ₀₁	

 \geq Pointed observations: CO, H₂O, CI, CII, NH, NH₂, HF, HCI, CH⁺

> PACS: full spectrum 55-95.2 μ m and 101.2-210 μ m. Stared mode: 5x5 spaxels of 9.4" (FOV of 47"x47")

> SPIRE: full spectrum 190-672 μ m

B1

04^{\$}0

IFI

CO SIO

> IRAM 30m survey

20^h39^m12^s0

- The LI I 57 chemically rich outflow
- CHESS Observations
- Molecular content in LII57-BI
- Shock structure and comparison with models
- Summary and Conclusions

Molecular content in L1157-B1

Species	Lines	HIFI	SPIRE	PACS	E _{up} (K)
C 0	18	9	9	10	83 - 1397
¹³ CO,C ¹⁸ O	5,1	5,1	-	-	79 - 291
H ₂ O (o/p)	14	8 (5,3)	2 (p)	6	26 - 323
ОН	6	-	-	6	120 - 291
OI	2	-	-	2	228 - 253
CI	2	2	2	-	24 - 63
HCO^{+}	2	2	-	-	90 - 120
H ₂ CO (o/p)	12	12	-	-	
СН ₃ ОН	63	63	-	-	
HCN	2	2	-	-	89 - 119
NH ₃ (0)	1	1	-	-	28
H_2S (o/p)	3	3	-	-	48 - 86
CS	3	3	-	-	129 - 183
SiO	1	1	-	-	163
NO	1	1	-	-	
HCI		1	-	-	30
All (3 σ)	34	113	13	24	

I7 molecular species
detected with HIFI
3 new species in outflows:
NO, HCI (Codella et al. 2012)
see poster by Codella et al.
and N₂H⁺
Species searched for but not
detected with HIFI: CH⁺, HF,
NH, NH₂, HDO, C⁺

Ongoing projects:

- N-bearing species (HIFI and IRAM) \longrightarrow see poster by Vasta et al. from simple (PN, NS, CN) to very complex molecules (CH₂CHCN...). N₂H⁺ detected for the first time in outflows
- H₂O emission (HIFI and PACS)

 \rightarrow see poster by Busquet et al.

Molecular content in L1157-B1

HCI (1-0) @625.9 GHz towards L1157-B1

See poster by Codella et al.

• HCl emission does not come from the cloud component

HCl comes from compressed
(> 10⁵ cm⁻³) gas

X(HCI) around 10⁻⁹: similar to that observed in protostars
BUT grain erosion in the shock has returned up to 10% of Si to the gas phase
chlorine is depleted into a more refractory phase than silicon?
HCI in not the main reservoir of chlorine?

• The LI 157 chemically rich outflow

- CHESS Observations
- Molecular content in L1157-B1
- Shock structure and comparison with models
- Summary and Conclusions

Lefloch et al. (2010) derived the physical condition from low- J_{up} CO lines:

- Low-velocity component (LVC): -7 < v < 4 km/s, molecular rich and relatively cold (T~100 K) and high density gas
- High-velocity component (HVC): -30 < v < -7 km/s, molecular poor and associated with hot gas (T>400 K) at moderate densities

The high-velocity gas

Excellent match in the HV regime for high-J $_{\rm up}$ CO and SiO

PACS CO maps

(Benedettini, Busquet, Lefloch et al. 2012)

- PACS CO lines associated with HVC
- B1 position: PACS and HIFI data to constrain temperature and density using LVG model

T= 200 - 600 K
n(H₂) >
$$10^5$$
 cm⁻³

- OH and [OI] peak at the same position of CO, at the rear of the bow shock
- They also correlate with [Fell] (Neufeld et al. 2009)
- Tracers of postshock gas trace the extended bow shock

Benedettini et al. (2012); SiO: Gueth et al. (1998); CH₃CN: Codella et al. (2009): H₂: Caratti o Garatti et al. (2006)

- OH and [OI] peak at the same position of CO, at the rear of the bow shock
- They also correlate with [Fell] (Neufeld et al. 2009)
- Tracers of postshock gas trace the extended bow shock

The low-velocity gas

NH₃, H₂CO, and CH₃OH emit at low outflow velocities; H₂O is bright at high velocities (Lefloch et al. 2010, Codella et al. 2010)

> Modelling of NH_3 and H_2O profiles (Viti et al. 2011) at B1 position:

UCL_CHEM (Viti et al. 2004) + parametric shock model (Jimenez-Serra et al. 2008)

The low-velocity gas

NH₃, H₂CO, and CH₃OH emit at low outflow velocities; H₂O is bright at high velocities (Lefloch et al. 2010, Codella et al. 2010)

Modelling of NH₃ and H₂O profiles (Viti et al. 2011) at B1 position:

UCL_CHEM (Viti et al. 2004) + parametric shock model (Jimenez-Serra et al. 2008)

Differences are purely chemical: NH₃ is destroyed at very high T while destruction of H₂O has very high barrier. Explained by C-type shock

 v_{shock} ~40 km/s, n_{H} ~10⁵ cm⁻³, T_{max} ~4000 K

Comparison with C+J shock model that fits H₂ and SiO in L1157-B1 (Gusdorf et al. 08b)

Shock parameters: $n_{H} = 10^{4} \text{ cm}^{-3}$, Vs = 20 km/s, age ~1000 yrs, b = 0.45-2.0

Comparison with C+J shock model that fits H₂ and SiO in L1157-B1 (Gusdorf et al. 08b)

Shock parameters: $n_{H} = 10^{4} \text{ cm}^{-3}$, Vs = 20 km/s, age ~1000 yrs, b = 0.45-2.0

• The LI 157 chemically rich outflow

- CHESS Observations
- Molecular content in L1157-B1
- Shock structure and comparison with models

• Summary and Conclusions

✓ We obtained a complete chemical census of a shocked material in L1157 B1

✓ A comprehensive picture of outflow shock region L1157-B1 is emerging, showing a chemical and physical differentiation

✓ Two CO gas components are detected:

Hot component at T~600 K, $n(H_2)$ ~10⁵ cm⁻³

Warm component at T~130 K, $n(H_2)$ ~2×10⁵ cm⁻³

 Comparison with shock models suggests that the hot component, at the rear of the bow shock, arises from a dissociative J-type shock

 \checkmark At the B1 position, NH₃ and H₂O line profiles agree with a C-type shock scenario

THANKS!