

PROTOSTARS: THEORY AND MODELS

Ruud Visser University of Michigan

March 21, 2012

ACKNOWLEDGMENTS

- ✗ University of Michigan
 - + Ted Bergin
 - + Lee Hartmann
- ★ Leiden Observatory
 - + Ewine van Dishoeck
 - + Lars Kristensen
 - + Daniel Harsono
 - + Umut Yıldız
- ★ MPE Garching
 - + Greg Herczeg (→ Kavli, Beijing)
 - + Simon Bruderer
 - + Agata Karska
- × StarPlan, Copenhagen
 - + Jes Jørgensen
 - + Christian Brinch

- Denison University, Ohio
 + Steve Doty
- ✗ University of Texas
 - + Neal Evans
 - + Joel Green
- **×** University of Rochester
 - + Puravankara Manoj
 - + Dan Watson
- University of Toledo
 - + Tom Megeath
- **×** Johns Hopkins University
 - + David Neufeld
- × Universität Heidelberg
 - + Kees Dullemond

PROTOSTARS: THEORY & MODELS IN FOUR STEPS

- 1. Physical structure
- 2. Energetic feedback
- 3. Episodic accretion
- 4. Chemistry

1. PHYSICAL STRUCTURE

INSIDE-OUT COLLAPSE

- Analytical solution of fluid equations
- * $n \propto R^{-2}$ outside collapse front, tends to $R^{-1.5}$ inside
- Rotation or magnetic field breaks spherical symmetry, forms disk
- Realistic initial conditions?

Shu (1977), Terebey, Shu & Cassen (1984), Galli & Shu (1993a,b)

FLOW OF MATTER

Infalling parcels in a collapsing core by Reinout van Weeren

Note:

- Spreading of disk
- Accretion on top and at outer edge
- Inner envelope ends up at midplane
- Outer envelope ends up at surface

Yorke & Bodenheimer (1999), Brinch et al. (2008a,b), van Weeren et al. (2009)

FLOW OF MATTER

Note:

- Spreading of disk
- Accretion on top and at outer edge
- Inner envelope ends up at midplane
- Outer envelope ends up at surface

Yorke & Bodenheimer (1999), Brinch et al. (2008a,b), van Weeren et al. (2009)

How to apply this to observations?

- ★ Assume spherical powerlaw density: $n(H_2) \propto r^{-p}$
- ★ DUSTY: 1d continuum RT (Ivezić & Elitzur 1997)
- ***** Free parameters: $p, r_{out}, \tau_{100}, (r_{in}, L_*, T_*)$
- Seware: protostars not spherical on 100 AU scales

BEYOND SPHERICAL POWER-LAW MODELS

× Three physical components

• Rotating collapsing envelope (Ulrich 1976, Terebey, Shu & Cassen 1984)

- Bipolar outflow cavity (Whitney et al. 2003)
- Flared disk (Chiang & Goldreich 1997)
- **×** More model parameters (!)
 - Fix some, vary the rest (Whitney et al. 2003ab, Crapsi et al. 2008, Tobin et al. 2008, Fischer et al. 2010)
 - Explore everything (Robitaille et al. 2006)

A GRID OF 200,000 SEDS

- × 15 free parameters
- Second Second
- Beware: solutions are degenerate

Herschel covers peak of SED: key to constraining masses, temperatures

Robitaille et al. (2006); photometry from Froebrich (2005), Kristensen et al. (2012)

2. ENERGETIC FEEDBACK

ENERGETIC FEEDBACK

× Components to characterize:

- Jets, winds, shocks
- UV
- X-rays
- **×** Questions:
 - Relative energy inputs
 - Spatial distribution
 - Effect on chemistry

Contraction of the second seco	

How to quantify heating by UV and shocks?

HH46: Class I protostar ($L_{bol} = 26 L_{\odot}$) Spitzer image from Velusamy et al. (2007)

Source structure

- × $n(H_2)$, T_{dust} from SED
- **×** Cavity shape from Spitzer

UV heating

- $\star \quad T_{gas} = f(n_{H}, F_{UV}, A_{V})$
- Problem: factor 10 spread in T_{gas} in literature

Shock heating

- ***** T_{gas} from 1D shock models
- Uncertainties unknown

"Typical" temperatures

- **×** UV: few 100 K
- * shocks: few 1000 K

CONSTRAIN L_{UV} , V_{S} FROM HIGH-J CO EMISSION

UV-heated gas emits at lower J than shocked gas

Visser et al. (2012)

CO LADDER DECOMPOSITION FOR HH 46

van Kempen et al. (2010), Visser et al. (2012)

Observed Spectra

- ★ ¹³CO 6−5 in NGC1333 IRAS4A/4B with APEX
- IRAS 4A: mass of UVheated gas same or more than mass of outflow

Note that the intensity scale changes

Observed Spectra – Outflow

- ★ ¹³CO 6−5 in NGC1333
 IRAS4A/4B with APEX
- IRAS 4A: mass of UVheated gas same or more than mass of outflow

Note that the intensity scale changes

Observed Spectra

- Outflow
- Envelope Emission

 IRAS 4A: mass of UVheated gas same or more than mass of outflow

Note that the intensity scale changes

Observed Spectra

- Outflow
- Envelope Emission
- = UV heated gas

 IRAS 4A: mass of UVheated gas same or more than mass of outflow

Note that the intensity scale changes

Note that the intensity scale changes

PDRs versus XDRs

 $n(H_2) = 10^6 \text{ cm}^{-3}$, $F_{UV} = F_X = 27 \text{ erg s}^{-1} \text{ cm}^{-2}$ ($\chi = 10^4$)

models by Simon Bruderer; see also extragalactic papers

3. EPISODIC ACCRETION

THE LUMINOSITY PROBLEM

Kenyon et al. (1990, 1994, 1995), Enoch et al. (2009), Evans et al. (2009)

HYDRODYNAMICAL SIMULATIONS

- Variability on $10^2 - 10^4$ yr timescales
 Reproduces
 L_{bol}, T_{bol} distributions
- Repeated heatcool cycles may affect chemistry

Vorobyov & Basu (2005–10), Zhu et al. (2009–10), Dunham & Vorobyov (2012)

4. CHEMISTRY

PARAMETERIZED ABUNDANCE PROFILES: CO

PARAMETERIZED ABUNDANCE PROFILES: CO

- Drop abundance: high – low – high(er)
- Pre-Herschel problem: only 20% of low-J flux from T > 20 K
- Herschel data:
 X_{in} factor 3–7 below
 canonical

CHEMISTRY PROBLEMS INITIATED BY HERSCHEL

***** Hot cores/corinos are dry (first hinted at by ISO)

- $X(H_2O) = (1-5) \times 10^{-6}$ in three low-mass sources
- X-ray chemistry? (cf. Stäuber et al. 2006)
- **x** Diversity in HDO/H₂O
 - <0.0006 to 0.03 in three hot cores</p>
 - <0.005 to >0.01 in three cold envelopes
- **x** Water o/p ratio: ~3 or lower?
- × Nitrogen chemistry models
 - NH, NH₂ are fine, NH₃ underproduced

Herschel offers great constraints on SED modeling, energetic feedback and chemistry

Hot cores are dry

High-J CO is ubiquitous in protostars; origin in UV- and shock-heated gas?