Water high resolution spectroscopic observations of massive protostars with Herschel

Fabrice Herpin LAB/OASU-Bordeaux France

bservatoire Aquitair

Max-Planck-Institut

Radioastronomie

UNIVERSITÉ DE BORDEAUX

CENTRO DE ASTROBIOLOGÍA

PI E. van Dishoeck

WISH

• F. Herpin, L. Chavarria, A. Baudry, S. Bontemps, J. Braine, T. Jacq (Bordeaux)

COPS

- F. van der Tak, Y. Choi, R. Shipman, F.P. Helmich, (Groningen)
- F. Wyrowski, S. Leurini, T. Csengeri (Bonn)
- J. Cernicharo, J. Goicoechea, F. Daniel (Madrid)

The high-mass star formation puzzle

Formation of massive stars not well understood. Classical scheme for low-mass star formation cannot be applied as such to OB stars.

Most problematic issue: how to accumulate a large amount of mass infalling within a single entity despite radiation pressure.

 \Rightarrow Models considering a protostar-disk system (e.g. Krumholz et al. 2005) now quite successfully

address how the accretion of matter overcomes radiative pressure.

Two main theoretical scenarios have been proposed to form high-mass stars, both requiring the **presence of a disk** and **high accretion rates**:

(a) turbulent core model with a monolithic collapse scenario (Tan & McKee 2002, McKee & Tan 2003);

(b) highly dynamical **competitive accretion model** involving the formation of a cluster (Bonnel & Bate 2006)

Water might help + water = probe of the dynamics of the gas

In the deeply embedded phase of star formation, it is **only possible to trace the dynamics of gas** through resolved emission-line profiles, such as obtained **with HIFI**.

Water Observations

mIR-quiet HMPOs • pointed HIFI obs of 14 lines, including isotopic lines $(H_2^{18}O, H_2^{17}O)$

- \Rightarrow abundance + distribution of H₂O in envelopes
- maps : HIFI110-101 & 202-111 mini-maps + 111-000 large maps

 \Rightarrow water in massive outflows, filling, cooling & chemistry of intra-cluster gas

mIR-bright HMPOs

W3-IRS5 IRAS1808051732 W33A5 IRAS18151-1208 AFGL2591

IRAS05358+3543

IRAS16272-4837

NGC6334-I

W43-MM1

DR21(OH)

evolution

Hot Molecular Cores

G327-0.6 NGC6334-I(N) G29.96-0.02 G31.41+0.31 UC HII Regions G5.89-0.39 G10.47+0.03

- G34.26+0.15
- W51N-e1
- NGC7538-IRS1

Complementary PACS data

H₂O line profile analysis: modelling

Source model

Whitney-Robitaille (2003)

Line modeling RATRAN

Hogerheijde & van der Tak (2000)

Courtesy of Luis Chavarria

Fabrice Herpin |Grenoble Symposium|2012

Fabrice Herpin |Grenoble Symposium|2012

Abundances and dynamics results

* wish

Chavarria et al. (2010) Herpin et al. (in revision) Herpin et al. (in preparation) Daniel et al (in preparation)

evolution							
mid-IR quiet						mid-IR bright	UCHII
Parameter	IRAS05358	NGC6334I(N)	IRAS16272	W43MMI	DR2I(OH)	W3IRS5	W51N-el
Xout	4 x 10 ⁻⁸	4 x 10 ⁻⁹	4 x 10 ⁻⁹	8 x 10 ⁻⁸ (±1)	6 x 10 ⁻⁸	2 x 10 ⁻⁸	10 ⁻⁸ -10 ⁻⁹
X in	I x 10 ⁻⁶	4 x 10 ⁻⁷	4 x 10 ⁻⁷	1.4 x 10 ⁻⁴ (±0.4)	5 x 10 ⁻⁶	I x 10 ⁻⁴	5 x 10 ⁻⁵
Vturb	2.0	2.0	2.0	2.2-3.5	2.4	2.0	3.5
V _{exp∕inf}	2.0	-0.1	-0.1	(-0.9) -(-2.9)	-0.2	2.0	0 -(-7)

Special case: W43MMI, infall and turbulence ж wisн Herpin et al. (in revision) We see: infalling + passively heated envelope + outflow Huge infall ($V_{inf,max} = -2.9 \text{ km/s}$) \Rightarrow high accretion rate \Rightarrow $\dot{M} = 3.5-4$ 10⁻² M $_{\circ}$ /yr @ 5.7 - 7.3 × 10¹⁷ cm (38100-48800 AU) (spherical accretion assumed) SPACE OBSERVATOR highly supersonic turbulence, increasing with radius \Rightarrow while not in clear disagreement with 3.5 the competitive accretion scenario, this Ш behaviour is predicted by the turbulent core model (km/s)(Krumholz & Bonnel 2009) (km/s) s Vtur

2.5

103

R (AU)

104

Fabrice Herpin |Grenoble Symposium|2012

Conclusions from W43MMI

• Lower mass limit of gaseous water = 0.11 M $_{\odot}$. More than 97% of this mass is in the inner part. Mass of oxygen trapped in H₂O and CO is around 3 M $_{\odot}$, 96% locked in CO and 4% in H₂O.

• overabundance of water. Origin ?

- hot core where H_2O ice evaporates
- shocks (e.g. outflows)

 \Rightarrow higher water abundance might be related to the large infall, high turbulence and the micro-shocks created by its dissipation

• huge infall \Rightarrow high accretion rate

Hosokawa et al. (2010): realistic accretion rates are much lower (by about one order of magnitude) than the values obtained from the simple formula we used.

 \Rightarrow more likely of the order of $10^{-3} \text{ M}_{\odot} \text{ yr}^{-1}$ and accretion luminosity \approx a few 10^{3} L_{\odot} , hence consistent with the observed total (stellar +accretion) luminosity.

 \Rightarrow derived accretion rate, although uncertain, is high enough to overcome the radiation pressure due to the star luminosity (*McKee & Tan 2003;Yorke & Bodenheimer 2008*).

• highly supersonic turbulence, increasing with radius

⇒ while not in clear disagreement with the competitive accretion scenario, this **behaviour** is **predicted by the turbulent core model** (Krumholz & Bonnel 2009)

Thanks for your attention !

Thanks CNES for its financial support

WISH Team

