From the filamentary structure of the ISM to prestellar cores to the IMF: Results from the *Herschel* Gould Belt survey

> Philippe André CEA Lab. AIM Paris- Saclay

Part of Orion B 70/250/500 µm composite With: A. Menshchikov, V. Köryves, D. Arzoumanian, P. Palmeirim, N. Peretto, P. Didelon, N. Schneider, S. Bontemps, F. Motte, D. Ward-Thompson, J. Kirk, M. Attard, J. Di Francesco, P. Martin, P. Saraceno, J.Ph. Bernard & the *Herschel* Gould Belt KP Consortium

Ph. André - Herschel 2012 – Grenoble – 20/03/2012

PACS

The Herschel Gould Belt Survey

SPIRE/PACS 70-500 μ m imaging of the bulk of nearby (d < 0.5 kpc) molecular clouds (~ 160 deg²), mostly located in Gould's Belt. Complete census of prestellar cores and Class 0 protostars.

~ 15" resolution at $\lambda \sim 200 \ \mu m$ $\leftarrow \rightarrow$

~0.02 pc < Jeans length @ d = 300 pc

Motivation: Probing the origin of the stellar IMF

- Nature of the relationship between the CMF and the IMF ?
- What generates prestellar cores and what governs their evolution to protostars and proto-brown dwarfs ?

Herschel shows a "universal" filamentary structure in the cold ISM

Aquila: Actively star forming SPIRE 500 μm

d ~ 260 pc +

PACS 160/70 μm

Aquila Rift - *Herschel* Gould Belt survey André et al. 2010, Bontemps et al. 2010, Könyves et al. 2010

Polaris: Non star forming, unbound cirrus d ~ 150 pc SPIRE 250 μm

Polaris Flare - Gould Belt survey Men'shchikov et al. 2010, Miville-Deschênes ea. 2010, Ward-Thompson et al. 2010

Evidence of the importance of filaments prior to Herschel but ... much fainter filaments + universality with Herschel

Herschel 160/250/350 µm composite image of Musca

Cambrésy 1999

See also: Schneider & Elmegreen 1979; Mizuno et al. 1995; Hatchell et al. 2005; Goldsmith et al. 2008; Myers 2009 ...

Gould Belt Survey: N. Cox, E. Winston, A. Kospal et al., in prep.

Polarization vectors overlaid on Herschel image of Musca

N. Cox et al. in prep. + Pereyra & Magelhaes 2004

Very common pattern: main filament + network of perpendicular striations or "sub-filaments"

Taurus B211 filament: M/L ~ 50 M_{\odot} /pc

Palmeirim et al. 2012 - see Poster by P. Palmeirim

DR21 in Cygnus X: M/L ~ 4000 M_o/pc

Hennemann, Motte et al. 2012 - see Poster

Ph. André - Herschel 2012 - Grenoble - 20/03/2012

Interstellar filaments have a characteristic width ~ 0.1pc ~ sonic scale of ISM turbulence

D. Arzoumanian et al. 2011, A&A, 529, L6

Statistical distribution of widths for > 200 filaments

Using the DisPerSE algorithm (Sousbie 2011) to trace the crest of each filament

 Consistent with the view that filaments form as a result of turbulent compression in low-velocity shocks
 (cf. Padoan et al. 2001, but P. Hennebelle's talk)

Evidence of the formation of filamentary structures by large-scale compression in the Pipe Nebula

In the Pipe several filaments have asymmetric column density profiles, most likely due to compression by the winds of Sco OB2 (Peretto et al. 2012)

Column density map (Peretto et al. 2012) *Herschel* Gould Belt survey

Ph. André - Herschel 2012 – Grenoble – 20/03/2012

Examples of cores extracted in Aquila with "getsources" (Men'shchikov et al. 2010/12)

- Core = single star-forming entity (Need to resolve ~ 0.01-0.1 pc)
- Starless = no central proto★
- Prestellar = bound & starless

Herschel N_{H2} map (cm⁻²) 2 10²² 5 1.5 10²² Δð (arcmin) 1022 $\rm N_{H2}(cm^{-2})$ 0.5 pc -5 5 10²¹ 5 0 $^{-5}$ $\Delta \alpha$ (arcmin) Könyves et al. 2010, A&A special issue

 ~ 500 starless cores (no PACS 70 $\mu m),$ including ~ 300 prestellar cores

+

~ 200 YSOs (with PACS 70µm)

identified with getsources in Aquila

Prestellar cores lie in the densest filaments, above a column density threshold $N_{H_2} \gtrsim 7 \times 10^{21} \text{ cm}^{-2}$ <=> Aquila curvelet N_{H_2} map (cm⁻²) 10²¹ 10²² A_v ≥ 7-8 nstable $\Sigma_{\rm threshold} \sim 130 \ {\rm M}_{\odot}/{\rm pc}^2$ NGC2068/71 M_{line}/M_{line,crit} (Orion B) pc 3 0.1 e Unbound Schneider et al., in prep.

André et al. 2010, Könyves et al. 2010

Strong evidence of a column density "threshold" for the formation of prestellar cores

Ph. André - Herschel 2012 - Grenoble - 20/03/2012

Strong evidence of a column density "threshold" for the formation of prestellar cores

Distribution of background column densities

Real "threshold" or rising probability of core/star formation with increasing A_v?

Probability of finding a prestellar core below a given extinction

Ph. André - Herschel 2012 – Grenoble – 20/03/2012

Interpretation: Σ or M/L threshold above which interstellar filaments are gravitationally unstable

 $\Delta : \frac{\text{Prestellar cores}}{\text{Aquila curvelet } N_{\text{H}_2} \max (\text{cm}^{-2})}_{10^{21}}$

André et al. 2010, A&A Vol. 518

The gravitational instability of filaments is controlled by the mass per unit length M_{line} (cf. Ostriker 1964, Inutsuka & Miyama 1997): • unstable if $M_{line} > M_{line, crit}$ • unbound if M_{line} < M_{line}, crit • $M_{\text{line, crit}} = 2 c_s^2/G \sim 15 M_{\odot}/\text{pc}$ for T ~ 10K $\Leftrightarrow \Sigma$ threshold $\sim 150 \mathrm{M}_{\odot}/\mathrm{pc}^2$ > Simple estimate: $M_{line} \propto N_{H2} \times Width (\sim 0.1 \text{ pc})$ **Unstable filaments highlighted** in white in the N_{H2} map

Importance of the star formation threshold on (extra)galactic scales

Star formation rate vs. Gas surface density

$$\sum_{SFR} \propto \sum_{gas}$$
for

$$\sum_{gas} > \sum_{threshold}$$
Heiderman et al. 2010
Lada et al. 2010
See
Gao & Solomon 2004
for external galaxies
[NB: however,
Gutermuth et al. 2011
find $\sum_{SFR} \propto \sum_{gas}^{2}$]

SFK

Filament fragmentation may be responsible for the peak of the prestellar CMF and the IMF

CMF peaks at ~ 0.6 $M_{\odot} \approx$ Jeans mass in marginally critical filaments

Ph. André - Herschel 2012 - Grenoble - 20/03/2012

Conclusions: Toward a « universal » scenario for star formation on global (GMC) scales ?

- *→ Herschel* results suggest core formation occurs in 2 main steps:
 1) Filaments form first in the cold ISM, probably as a result of the dissipation of MHD turbulence (cf. Padoan et al. 2001);
 2) The densest filaments then fragment into prestellar cores via gravitational instability (cf. Inutsuka & Miyama 1997) above a critical threshold Σ_{th} ~ 150 M_☉ pc⁻² ⇔ A_V ~ 8
- Filament fragmentation appears to produce the prestellar CMF and likely accounts for the « base » of the IMF
- This scenario may possibly also account for the global rate of star formation on galactic scales