3D numerical calculations and synthetic observations of magnetized dense core collapse and fragmentation

Commerçon Benoît

LERMA/LRA - ENS Paris - CNES & ANR fellowships **Collaborators**: Patrick Hennebelle, François Levrier (LRA/ENS Paris-LERMA), Thomas Henning, Ralf Launhardt (MPIA Heidelberg) Kees Dullemond (ITA Heidelberg), Gilles Chabrier (CRAL/ENS Lyon) Edouard Audit, Romain Teyssier (SAp, CEA Saclay)

- 1. Introduction & Methods
- 2. Low-mass star formation: synthetic observations of first Larson cores
 - The fragmentation crisis & disk formation issue
 - SED and dust emission maps
 - ALMA predictions

3. Massive dense cores collapse

- Early fragmentation inhibition
- ALMA predictions

4. Conclusion

Star formation evolutionary sequence

RMHD with Flux Limited Diffusion in RAMSES

✓ RAMSES code (Teyssier 2002)

- AMR code, 2nd order Godunov scheme
- Ideal MHD solver (Fromang et al. 2006)
- RHD solver with the Flux Limited Diffusion (*Commerçon et al. 2011b*)
- Self-gravity
- Jeans length refinement criteria (>10 pts/ λ_{J})

1. Introduction & Method

2. Low-mass star formation: synthetic observations of first Larson cores

- The fragmentation crisis & disk formation issue
- SED and dust emission maps
- ALMA predictions
- 3. Massive dense cores collapse
 - Early fragmentation inhibition
 - ALMA predictions

4. Conclusion

Initial conditions (numerical experiment)

- 1 M_{\odot} isolated dense core: uniform density and temperature (10 K, α =E_{th}/ E_{grav}), solid body rotation ($\beta = E_{rot}/E_{grav}$), m=2 density perturbation (amplitude) A = 10%
 - ==> Small-scale fragmentation

★ Radiative transfer: efficient cooling (Attwood et al. 09) and heating (Krumholz et al. 09, Bate 09). Grey opacities from Semenov et al. 03.

★ Ideal MHD <==> flux freezing: $\varphi \otimes BR^2$ Magnetic field lines are twisted and compressed:

==> Outflow (e.g. Machida et al., Banerjee & Pudritz 06, Hennebelle & Fromang 08, Mellon & Li 2008)

 $\mu = (\phi/M)_{crit} / (\phi/M)$ (observations $\mu \sim 2-5$)

Commerçon Benoît - Herschel 2012

Looney et al. 2007

20/03/2012

Influence of the magnetization

yz - plane

- ✓ Magnetic field cannot be neglected (e.g. Hennebelle & Teyssier 2008, Commerçon et al. 2010, Seifried et al. 2011, Joos et al. 2012)
- Fragmentation crisis at the Class 0 stage for low-mass star formation - No massive and fragmenting disk
- ✓ Supported by observations (e.g. Maury et al. 2010)

Towards synthetic observations

- 3 representative cases

MU2: pseudo-disk + outflowMU10: disk + pseudo-disk + outflowMU200: disk + fragmentation

- First core lifetime:

MU2	MU10	MU200
1.2 kyr	3 kyr	> 4 kyr

Images & SED computed with the radiative transfer code **RADMC-3D**, developed by C.
Dullemond (ITA Heidelberg)
T_{dust} =T_{gas} (given by the RMHD calculations)

Commerçon, Launhardt, Dullemond & Henning, A&A 2012a

20/03/2012

SED - Do we see a first core signature?

Synthetic ALMA dust emission maps

- GILDAS IRAM simulator
- Different bands and configurations tested

ALMA Band 4 Config 15 @150 pc

Commerçon, Levrier, Maury, Henning & Launhardt (2012b) Commerçon Benoît - Herschel 2012

- First core candidates can be identified with compact emission at wavelength 20 μ m < λ < 100 μ m
- ALMA will give an answer to the fragmentation problem

1. Introduction & Method

- 2. Low-mass star formation: synthetic observations of first Larson cores
 - The fragmentation crisis & disk formation issue
 - SED and dust emission maps
 - ALMA predictions

3. Massive dense cores collapse

- Early fragmentation inhibition
- ALMA predictions

4. Conclusion

High mass star formation scenarii

• Competitive accretion (Bate, Bonnell et al.)

- Massive prestellar core does not exist
- Star clusters and massive stars form simultaneously (*Smith et al. 2009*)

• Gravitational collapse (Krumholz et al.)

- Massive prestellar does exist
- Fragmentation suppressed by protostellar feedback

• Column density threshold $\Sigma = I \text{ g cm}^{-2}$ (Krumholz & McKee 2008)

• But... to date:

- Magnetic field neglected
- More or less crude resolution
- Initial fragmentation
 Commerçon Benoît Herschel 2012

100 M_{\odot} turbulent dense core collapse

High-mass star formation: 100 M_☉ magnetized, turbulent and dense core w. FLD (follow-up of Hennebelle et al. 2011 barotropic study)

==> First full RMHD calculations

==> Influence of the magnetic field strength and radiative transfer on collapse, outflow launching and fragmentation

$100~M_{\odot}$ turbulent dense core collapse

High-mass star formation: 100 M_☉ magnetized, turbulent and dense core w. FLD (follow-up of *Hennebelle et al. 2011* barotropic study)

==> First full RMHD calculations

==> Influence of the magnetic field strength and radiative transfer on collapse, outflow launching and fragmentation

Model	μ	$lpha_{ m turb}$	Δx_{min} (AU)	Coarse grid	t_0 (Myr)
SPHYDRO	∞	$\sim 10^{-5}$	2.16	128^{3}	0.4786
MU130	~ 136	~ 0.2	2.16	256^{3}	0.4935
MU5	~ 5.3	~ 0.2	2.16	256^{3}	0.5397
MU2	~ 2.3	~ 0.2	2.16	256^{3}	0.5982

Commerçon, Hennebelle & Henning, ApJL 2011 20/03/2012

$100~M_{\odot}$ turbulent dense core collapse

Commerçon, Hennebelle & Henning, ApJL 2011 20/03/2012

$100~M_{\odot}$ turbulent dense core collapse

Commerçon, Hennebelle & Henning, ApJL 2011 20/03/2012

Key physical process: combined effect of magnetic braking and radiative transfer (*Commerçon et al. 2010*)

- ✓ Magnetic braking: magnetization / accretion rate /
- ✓ Accretion shock on the 1st hydrostatic core: all the infall kinetic energy radiated away (Commerçon et al. 2011a)

✓ Jeans stable mass (M_☉):

SPHYDRO	MU130	MU5	MU2
30	0.2	1.2	10

Towards massive star formation?

- ✓ Low magnetic field: fragmentation crisis, protostellar feedback would not help
 - similar to previous studies neglecting magnetic field (competitive accretion), or having a too low resolution (Peters et al. 2011)
 - \star Can magnetic field be neglecting?
- ✓ Intermediate magnetization: 2 fragments arranged in a filamentary like structure. Secondary fragment not produced by disk fragmentation (Krumholz et al.).
 - ➡ OB association formation
- ✓ High magnetization: I single fragment
 - ➡ Isolated massive star formation (e.g. observations by Bontemps et al., Girart et al., Bestenlehner et al. & Bressert et al.)
 - ➡ Further evolution by disk accretion (e.g. Kuiper et al. 2010)
 - \star Need longer time integration, sink particles

ALMA predictions: dust emission @ 3.5 mm

- Massive dense cores do not fragment
- Highly magnetized massive dense cores => progenitors of high mass stars

Radiation-Magneto-Hydrodynamic solver with AMR

First full RMHDs calculations of dense core collapse and outflow at small scales (*Commerçon et al. 2010, 2011c*)

Magnetic field inhibits small-scale fragmentation, "even" with radiative transfer. Magnetic braking favors radiative feedback

SEDs <=> First core candidates

Early fragmentation inhibition for collapsing massive dense cores

Magnetized massive dense cores = good candidates for massive star formation

THANK YOU

Commerçon Benoît - Herschel 2012

20/03/2012