Coagulation and Fragmentation of Dust in Molecular Cloud cores [Ormel et al. 2009, 2011]

Wavelength λ [µm]

Chris Ormel Hubble fellow, UC Berkeley

Collaborators: Dominik Paszun, Michiel Min, Carsten Dominik (U. of Amsterdam) Xander Tielens (U. of Leiden)

Contents

1.(micro)Physics of dust aggregate collisions

2.Numerical calculations dust growth

- Ormel+(2009,2011)
- **3.**Applications
 - 9.7 µm vs near-IR color excess
 - Sub-mm opacities

Obsv. evidence grain growth

Core-shine

Terminology

Condensation, Coagulation, Fragmentation

Condensation

- = Ice mantle formation
- Coagulation = Aggregation
- Fragmentation = Disaggregation

cf. Hirashita (2012)

Physics of dust aggregate collisions

contact; E_{break} to break rolling

- E_{break,} E_{roll} = f(material prop.)
- E = Collision energy = f(mass, vel)

For rurther update/refinements see: Ossenkopf (1993); Blum & Wurm (2008); Paszun & Dominik (2008--2009); Wada+(2008--2011); Okuzumi 2009; Güttler+(2009); Seizinger+(2012)

10 cm/s, silicates

All movies (c) Paszun & Dominik (2009)

1 m/s, silicates

Velocity (collision energy) matters!

2 m/s, fluffy

Internal structure (porosity) matters too

8 m/s, ice

Composition matters!

Grain growth calculations [Ormel+2009]

Model assumptions:

- Turbulent motions (subsonic) dominate
- Marginally-stable: $L = L_J$ and $V = c_s$
- Single grain size (0.1um)
- Homogeneous cloud

$$\Delta v_0 \approx 8.3 \times 10^2 \text{ cm s}^{-1} \left(\frac{a_0}{0.1 \,\mu\text{m}}\right)^{1/2} \left(\frac{n}{10^5 \,\text{cm}^{-3}}\right)^{-1/4} \left(\frac{T}{10 \,\text{K}}\right)^{1/4}.$$

$$t_{\text{coll},0} = \left(8.5 \times 10^4 \,\text{yr} \left(\frac{a_0}{0.1 \,\mu\text{m}}\right)^{1/2} \left(\frac{n}{10^5 \,\text{cm}^{-3}}\right)^{-3/4} \left(\frac{T}{10 \,\text{K}}\right)^{-1/4}.$$

Simulation setup [Ormel+2009]

Statistical treatment: Combine *collisional evolution code* (Monte Carlo) with parameter study of *molecular dynamics*

Results I: size distribution

Steady State! Coagulation balances fragmentation Significant Growth! Due to stickiness of ice

Results II: universal scaling (ice-coated models)

Opacity calculations [Ormel+2011]

Effective medium theory

Bruggeman rule

$$f_{\rm fill} \sum_{i=1}^{N_{\rm c}} f_i \alpha_{\rm c} (m_i/m_{\rm eff}) + (1 - f_{\rm fill}) \alpha_{\rm c} (1/m_{\rm eff}) = 0,$$

- Previously good agreement with DDA simulations
 - Min et al. (2009)
- Includes porosity, silicate, & graphite

Extinction curve follows size distr.

Size distribution

10µm vs near-IR colours

Observed relationship hard to explain with a (simple) coagulation scenario

Sub-mm indices $\beta (\kappa_{\lambda} \sim \lambda^{-\beta})$

Time	$\kappa_{850}:\kappa_{2.2}$	β
10^{5}	3.0×10^{-4}	2.0
10^{6}	7.9×10^{-5}	2.0
3×10^{6}	4.6×10^{-4}	2.3
10^{7}	7.2×10^{-3}	3.3

β=κ(850μm):κ(500 μm)

Find β>2 (see Planck Collaboration results) Alternative explanation: temperature effect [eg. Mennella+1998, Boudet+2005, Demyk poster]

Multi-wavelength observations required to discern scenario [cf. Shirley+2011]

Conclusions/Takaways

Cores MC laboratory dust aggregation process

Ice mantles facilitate coagulation

Potential growth t_{coll,0} vs t_{life}

- When $t_{life} \sim t_{ff}$ growth is limited

Opacities

- Mixing/ice mantle formation influences $\kappa(\lambda)$
- Multi-wavelength modeling to constrain