Poster Blitz #1

The Aquila prestellar core population

Vera Könyves (SAp, CEA/Saclay)

Ph.André, A.Men'shchikov, N.Schneider, S.Bontemps, D.Arzoumanian, A.Maury, N.Peretto, F.Motte, P.Didelon, P.Palmeirim, M.Attard, and the SPIRE SAG3 cons.

GOULD BELT SURN

Serpens-S filament

irfu

œ

saclay

 $N_{\rm H2}({\rm cm}^{-2})$

1022

The ambivalent role of H3+ in the ortho/para thermalization of H2

o/p ratio of H₂ in our standard model (R_{gr} = 0.1 μ m, T = 10 K, ζ = 3×10⁻¹⁷ s⁻¹) as function of the gas density, n_H, for two different models.

Le Gal, Hily-Blant, Faure, Rist, Pineau des Fôrets 2012, In prep.

Large-Scale Infrared Dark Filaments

C. Lenfestey^{1,2}, N. Peretto² and G.A.Fuller¹

1. Jodrell Bank Centre for Astrophysics, University of Manchester, UK; 2. Service d'Astrophysique CEA Saclay, France

SDCs with the filamentary structures detected by the MST algorithm.

Herschel column density map with contours showing peak (left), plot of distances between consecutive peaks (right)

(left) *Herschel* column density map with contours outlining the SDCs overlaid, (right) *Spitzer* 8µm map

The dust temperature and density distributions of B68 M. Nielbock et al.

Evidence for the growth of the Taurus B211 filament based on Herschel Observations irfu HERSCHEL œ GOULD BELT SURVEY saclav P. Palmeirim¹, Ph. André¹, D. Arzoumanian¹, J. Kirk², D. Ward-Thompson², N. Peretto¹, N. Schneider¹, P. Didelon¹, V. Konyves¹, A. Men'shchikov¹ and the Herschel Gould Belt and SAG 3 consortia ¹Laboratoire AIM, DSM, IRFU/Service d'Astrophysique, C.E.A. Saclay ²School of Physics & Astronomy, Cardiff University, Cardiff, UK angular radius [arcmin] -20 -40P. Palmeirim et al. in prep 16 15 X temperature 14 13 Dust 12 11 -1.5-1.0-0.50.0 0.5 1.0 1.5 Radius [pc] 10²¹ No(cm⁻²) 10 Low-density striations along the direction of the magnetic field. 28°20'00' The B211 filament isn't isothermal. 28°00'00' 27°40'00 The filament is contracting towards its major axis? 27°20'00" Infall velocity (~ 1 km/s) from the striations onto the B211 filament are consistent with ¹²CO observations (Goldsmith et al. 2008). 27°00'00" Curvelet componer olumn density map 26°40'00' The B211 filament is currently contracting quasi-statically towards its long axis while $= 2c^{2}/G$

accreting material from the surrounding environment.

nutsuka & Miyama

4^h20^m00^{*} Ascension (J2000

Herschel view of the star-forming complex NGC 6334

Russeil D., Schneider N., Anderson L., Zavagno A., Motte F., Bontemps S., Tigé J., Molinari S., Persi P. et al.

Possible External Triggers of Star Formation in the Orion-A GMC Shimajiri Yoshito (Nobeyama Radio Observatory) et al.

