

MODELLING HERSCHEL OBSERVATIONS OF HOT GAS EMISSION IN LOW-MASS YSOS

Ruud Visser (Leiden Observatory)

L.E. Kristensen, E.F. van Dishoeck, G.J. Herczeg, T.A. van Kempen, S. Bruderer, C. Brinch, S.D. Doty, U.A. Yıldız, M.R. Hogerheijde, F.-C. Liu, B. Parise, J.K. Jørgensen, S.F. Wampfler, A.O. Benz and the WISH team

September 7, 2010

EMBEDDED PHASE OF STAR FORMATION

- × Largely determines final M_{\star}
- × Formation of protoplanetary disk
- Active chemistry (gas/grains)
- × Violent and dynamic
 - + Infalling envelope
 - + Bipolar outflow
 - + Jets and shocks
 - + UV photons and X-rays

Science case: disentangle contribution from each component to observed emission

ISO: ROTATIONALLY EXCITED CO AND H₂O

× CO up to $E_{up} \approx 1200$ K, H_2O up to $E_{up} \approx 400$ K

x Origin debated: dense inner envelope or shocks?

Giannini et al. (1999), Ceccarelli et al. (1999)

APEX: CO 2-1 UP TO 7-6

- High-J lines underproduced by spherical envelope model
- Narrow width of high-J lines argues against shocks
- Likely origin: hot gas in walls of outflow cavities

Spaans et al. (1995), van Kempen et al. (2009)

APEX: CO 2-1 UP TO 7-6

- High-J lines underproduced by spherical envelope model
- Narrow width of high-J lines argues against shocks
- Likely origin: hot gas in walls of outflow cavities

Spaans et al. (1995), van Kempen et al. (2009)

HERSCHEL-PACS: CO 14-13 UP TO 36-35

- CO detected up to 2700 K above ground state
- Origin of the cold and hot gas?
- Is it possible to reproduce the full ladder with models?

van Kempen, Kristensen, Herczeg, Visser, et al. (2010)

MODEL STEPS

 Physical components:
 + Spherical envelope
 + Bipolar outflow cavity
 + Shocks along cavity wall
 × Abundances from chemical network

× Compute line emission

Put in what we think we know, see what comes out

PASSIVELY HEATED SPHERICAL ENVELOPE

- Kas heated by protostellar luminosity
- Constrained from SED and sub-mm brightness profiles
- × Power-law density
- × T_{dust} from radiative transfer
- **×** Gas-phase chemistry with:
 - + freeze-out
 - + photodesorption
 - + thermal desorption,
 - + photodissociation/ionization

EXCITATION AND RADIATIVE TRANSFER

× LIME:

- Line Modelling Engine (Brinch & Hogerheijde 2010)
- × Developed from RATRAN
- × Non-LTE, full 3D
- Random grid points weighted by density
- × Output: spectral cube

UV-HEATED OUTFLOW CAVITY WALLS

- × Ellipsoid outflow cavity
- × Free parameter: $L_{\rm UV}$
- × 2D, axisymmetric
- VV field done in 1+1D
- × Raytracing with LIME

Spitzer image from Velusamy et al. (2007)

GAS TEMPERATURE

- × At cavity wall: $T_{surf} = f(n_H, F_{UV})$
- Problem: large variations in literature
- × In envelope: $T = T_{surf} \exp(-0.6A_{v})$
- Problem: depth
 dependence (A_V) is
 poorly known

With temperatures from Kaufman et al. (1999):

Visser, Kristensen et al. (in prep.)

SHOCKS ALONG THE CAVITY WALLS

- × Full MHD, 2D axisymmetric
- × Interaction of disk wind with envelope
- × C-type shocks

Shang et al. (2006)

FROM MHD SIMULATIONS TO LINE FLUXES

- Flower & Pineau des Forêts (2003),
 Kristensen et al. (in prep.):
 - + 1D, MHD, sophisticated chemistry (with grains)
 - + Cooling lengths for CO, H_2O , ...
 - + Fluxes not yet calculated (work in progress)
- × Kaufman & Neufeld (1996)
 - + 1D, MHD, simple chemistry (no grains)
 - + Line fluxes from 1D C-type shocks
 - + Range of pre-shock densities: $10^4 10^{6.5}$ cm⁻³
- × Combine to get fluxes for our model

FROM MHD SIMULATIONS TO LINE FLUXES

× Combine to get fluxes for our model

FROM MHD SIMULATIONS TO LINE FLUXES

- Flower & Pineau des Forêts (2003),
 Kristensen et al. (in prep.):
 - + 1D, MHD, sophisticated chemistry (with grains)
 - + Cooling lengths for CO, H_2O , ...
 - + Fluxes not yet calculated (work in progress)
- × Kaufman & Neufeld (1996)
 - + 1D, MHD, simple chemistry (no grains)
 - + Line fluxes from 1D C-type shocks
 - + Range of pre-shock densities: $10^4 10^{6.5}$ cm⁻³
- × Combine to get fluxes for our model

SHOCKS ALONG THE CAVITY WALLS

- Cooling length (shock width) decreases with density
- × Magnetic *b* set to 1
- × Shock velocity:
 - assumed constant along wall
 - treated as free parameter
 - + best fit: 20 km/s

THE FULL CO LADDER

van Kempen, Kristensen, Herczeg, Visser, et al. (2010)

MAIN UNCERTAINTY: GAS TEMPERATURE

- × PDR code comparison
- × $n(H_2)=10^3 \text{ cm}^{-3}$ $G_0=10^5$
- Factor 10
 differences in
 A_v range of
 interest

× $T \sim \exp(-0.6A_{\rm V})$

Röllig et al. (2007)

MAIN UNCERTAINTY: GAS TEMPERATURE

- × Factor 10 difference for part of $n(H_2)-G_0$ space
- × Absolute CO fluxes and shape of CO ladder change

CO LADDER REVISITED

- Passive & UVonly (no shocks)
- No curve fits all observations: shocks are always needed
- Resolved line
 profiles needed
 to confirm
 quantitative
 conclusions

OTHER SPECIES: CHEMICAL EVOLUTION

- CO used to "calibrate" the models
- × Main goal in WISH: H_2O
 - + H₂O radiative transfer much harder than CO
 - + LIME works better than RATRAN
 - First H₂O model results in three WISH papers

Kristensen, Visser et al. (2010)

H₂O ABUNDANCE FROM CORES TO DISKS

- WISH first results:
 Pre-stellar cores: <10⁻⁹
 Class 0/I: 10⁻⁸ 10⁻⁵
 Disks: <10⁻⁸
- × Challenges:
 - + H_2O chemical evolution
 - + Effects on other species, e.g. complex organics

Herbst & van Dishoeck (2009), Visser et al. (2009)

WORK IN PROGRESS

- Apply model to other Class 0/I sources: NGC1333 IRAS2A, DK Cha
- × Adapt model for disks: HD100546
- Couple with VLT-CRIRES observations of warm gas in inner disk (poster #13 by D. Harsono)
- Calculate fluxes from Flower & Pineau des Forêts (2003) shock models

CONCLUSIONS

- Hot gas emission from embedded YSOs can be reproduced quantitatively
- **×** Results very sensitive to gas temperature
- **×** For HH46, the CO ladder up to J=36-35:
 - + ~1% passively heated envelope
 - +~60% UV-heated outflow cavity walls
 - +~40% shocks along cavity walls