The Evolution of Gas in Protoplanetary Disks

ILARIA PASCUCCI

Space Telescope Science Institute

Department of Physics & Astronomy, Johns Hopkins University

Outline

- I. Motivate the study of gas in disks
- 2. Gas in protoplanetary disks

RA offset (arcsec; J2000)

3. Herschel first results and key contributions

Gas in the protosolar nebula

CAI

~2,000 K gas present

oldest solids

~ 2Myr

gas present

~ 5 Myr (?)

+50 Myr

photoevaporating nebula (?)

gas (?)

Pascucci & Tachibana 2010

The evolution disk gas directly affects:

- when giant planets form and their atmosphere
- the final location of planets in the disk

the habitability of terrestrial planets
(circular orbits and volatile delivery)

Planet migration and disk gas

Inward migration of planetesimals

Nebular gas permits inward radial transport of icy solids that can replenish the terrestrial planet-forming region of volatiles (e.g. Ciesla & Lauretta 2005)

Formation of terrestrial planets: embryo-disk interaction

A small amount of gas (~Ig/cm²) may be needed to form terrestrial planets on circular orbits

Key Questions:

how does disk gas evolve as a function of time and radial distance from the star?

how does chemistry evolve with time?

which mechanisms clear out primordial disks?

Photoevaporation: gap formation

→ talk by Uma Gorti

See also: Alexander et al. 2006; Gorti & Hollenbach 2009; Gorti et al. 2009; Ercolano et al. 2009

Key Questions:

how does disk gas evolve as a function of time and radial distance from the star?

how does chemistry evolve with time?

which mechanisms clear out primordial disks?

What do we know about the evolution of disk gas?

Diagnostics of gas accreting onto the star

Accretion rates from Herbig stars to brown dwarfs

Dispersal of hot dust – end of accretion

Accretion does not measure the gas disk mass

$$\dot{M} \simeq 7 \times 10^{-9} \left(\frac{\alpha}{0.01}\right) \left(\frac{T_{1\rm AU}}{100K}\right) \left(\frac{\Sigma_{1\rm AU}}{100 \, g/cm^2}\right) \ [M_{\odot}/yr]$$

Hartmann (1998)

To use the equation above we need to know:

- viscosity parameter
- midplane disk temperature
- how surface density scales with radial distance
- is gas depleted because of other mechanisms (e.g. photoevaporation)?

Gas in Young Protoplanetary Disks

ABAur

Simple (abundant) molecules detected

CO overtone: ~1,000 K gas within < 0.3 AU rarely detected
CO fundamental: cooler gas out to a few AU often detected
H₂ NIR: disk surface ~1,000 K out to several AU (30% det. rate) (reviews by Najita et al. 2007, Carmona 2010, Pascucci & Tachibana 2010 + poster 7)

Gas line detections vs spectral type

MIR spectra of intermediate-mass stars are not rich in molecular lines UV photodestruction of molecules?

Lack of water lines but strong OH lines in Herbig

Chemically poor outer disks of Herbig stars

Molecule	χ^2 -minimization method			Cher	Chemical model	
	Ν	1σ	N/N(13CO)(1*)	Ν	N/N(13CO)(2*)	N/N(¹³ CO) ^(1*)
	$[cm^{-2}]$	error		$[cm^{-2}]$	1	
H_2	610^{22}	110^{22}	1.510^{6}	510^{22}	1.310^{6}	1 107
¹³ CO ^(*3)	410^{16}	510^{15}	1	410^{16}	1	1
HCO^+	610^{12}	310^{11}	1.510^{-4}	1.510^{13}	410^{-4}	210^{-3}
HCN	510^{11}	310^{11}	1.310^{-5}	410^{11}	10^{-5}	710^{-4}
CS	310^{12}	310^{12}	$< 810^{-5}$	210^{11}	510^{-6}	310^{-4}
C_2H	210^{13}	210^{13}	$< 5 10^{-4}$	10^{10}	2.510^{-7}	10^{-3}
CH_3OH	0	710^{15}	$< 210^{-1}$	0	0	0

AB Aur vs DM Tau (Schreyer et al. 2008)

supported by other studies: Chapillon et al. 2008, Henning et al. 2010, Oberg et al. 2010 \rightarrow talk by K. Oberg

Effect of high UV field from intermediate-mass stars

Different chemistry in disks around brown dwarfs

- IRS low-resolution spectra from a sample of 44 disks around sun-like stars and 17 disks around brown dwarfs

a multitude of diagnostics to trace gas from very close to the central star out to hundreds of AU

rich complex chemistry linked to the stellar radiation field \Rightarrow talk by V. Geers and P5+P9+P12

Evolved Protoplanetary Disks

Fewer CO rovibrational lines detected

- Sun-like Stars: CO detections in 9/14 transition disks, hot gas in the dust-depleted disk (Salyk et al. 2009)

Lack of strong molecular lines in transition disks

OH produced via dissociation of water? (Tappe et al. 2008) \Rightarrow talk by Uma Gorti

Atomic lines in 'oldish' disks

disks in ~5Myr-old star-forming regions

Glassgold et al. 2007, Meijerink et al. 2008, Ercolano et al. 2008, Hollenbach & Gorti 2010

Ongoing photoevaporation in transition disks

The photoevaporative disk wind is mostly ionized

Gas in Debris Disks

Most of the primordial gas mass is dispersed early

FEPS (PI M. Meyer): Survey of 32 solar analogs (26 non-accreting stars)

Little gas to circularize terrestrial planet orbits

Second-generation gas in the disk of Beta Pic

extended emission from Fe I, Na I, Ca II, Ni I also [CII]157 μ m detected with Herschel (P15)

overabundance of C relative to other elements outgassing of planetesimals?

Millimeter results confirm low gas masses

First Results from the Herschel Space Observatory

Tracing the dispersal of nebular gas

Gas in Protoplanetary Systems – Herschel Key Program (PI W. Dent)

Sample of ~200 disks (1–30 Myr)

Key Tracers: [OI], [CII], H₂O, CO

+extensive modeling (Woitke et al. 2009,2010 Kamp et al. 2010)

Herschel Space Observatory – First results

[OI] 63 µm detected in most sources

FIR + mm lines to measure the gas disk mass

Pinte et al. 2010 based on 300,000 disk models by Woitke et al. 2010

Indications on gas/dust disk mass ratios

Thi et al. 2010

Summary

Spectra of young accreting disks are rich in molecular emission lines
 → complex chemistry stellar-mass dependent

• Spectra of evolved disks lack strong molecular lines but have atomic emission lines (photodestruction of molecules by UV field)

- Ongoing photoevaporation in some evolved/transition disks
- Debris disks do not have enough mass to form giant planets
- Herschel key contributions on :
- I) determination of gas masses as a function of stellar age
- 2) indications on gas/dust mass ratios \rightarrow disk dispersal mechanisms