Protoplanetary discs around Herbig Ae/Be Stars: Gas observations

Gwendolyn Meeus (UAM)

Thanks to my collaborators

Jean-Charles Augereau Jeroen Bouwman **Bill Dent** Andrés Carmona Carlos Eiroa **Carol Grady Benjamin Montesinos Christophe Pinte** Göran Sandell **Bernhard Sturm** Wing-Fai Thi Bart Vandenbussche Peter Woitke

Team members of GASPS and DIGIT

Motivation

- Discs are birth sites of planets
- Gas giant planets form within the first 10 Myr
- ✓ How does gas dispersal work? What timescale?
 ⇒ understanding of thermal balance and disc
 chemistry needed, and their dependency on
 stellar properties
- ✓ Gas lines are brightest in the far-IR
 ⇒ Herschel perfectly suited

- GASPS observations of Herbig Ae/Be stars
- Comparison with other properties
- HD169142: a case study
- DIGIT observations of HD100546
- Conclusions

Different gas species & transitions trace different regions in disc

GASPS observations

GASPS (PI Bill Dent)

26 objects in Herbig Ae/Be sample 5 more 'evolved' (transitional discs)

PACS settings targeted at main gas lines: CO, [CII], H₂O and [OI]

Observations trace gas in the **OUTER DISC**

HD97048 in the 'blue'

Detection of $p-H_2O$, not $o-H_2O$, o/p ratio chemistry clue

HD97048 in the 'red'

The sample at [OI] 63.2 micron

The sample at [CII] 157.7 micron

CO J=18-17 and [OI] 145.5 µm

CO dissociation in more tenuous environments? Or Temp. effect?

p-H₂O 89.988 µm and CO J=29-28

Flux (Jy)

Molecular gas in surface layers disc

Prediction of the hotter, opt. thin surface layer around opt.
 thick colder midplane (*Chiang & Goldreich 1997*):

For H_2 in near- and mid-IR:

 $T_{gas} \sim T_{dust}$, thermal excitation produces weak lines

- Detection only in few UV-strong objects
- \Rightarrow excitation by direct heating, and T_{gas} >> T_{dust}

(Martin-Zaïdi et al. 2007, Carmona et al. 2008)

H_2 1-0 S(1) Transition at 2.12 μ m

Carmona et al. Poster 7:2

HD97048 & HD100546 vs. HD141569

Similar spectral types but HD141569 is a transitional disc

CO rotational-vibrational transitions at 4.7 μ m: All 3 stars: T_{Vib} > 5600 K \Rightarrow UV fluorescent emission

HD141569: $T_{Rot} \sim 200$ K (kinetic T of gas) HD97048 & HD100546: $T_{Rot} \sim 1000$ K

PAH important for thermal budget: 30x more L_{PAH} in HD97048 & HD100546 \Rightarrow more direct heating of upper layer, more flaring

(Brittain et al. 2009, Van der plas et al. 2009 & private communication)

Trends with [OI] 63 µm line fluxes

 $[OI]145/[OI]63 < 0.05 \Rightarrow opt. thin lines (T ~ few 100 K)$

(Tielens & Hollenbach 1985)

Effective T [CII] 157.7 µm

 \Rightarrow If density similar in HAEBEs, T_{gas} not dependent on T_{eff}

(Tielens & Hollenbach 1985)

[OI] 6300 A PAH luminosity

[OI] 6300 Å in surface layers (up to 100 AU), origin in UV photodissociation of OH and H_2O , correlated to flaring and L_{PAH}

Highest [OI] 63 line fluxes for highest LPAH

([OI]6300 Å from Acke et al. 2005; PAH data from Acke et al. 2010)

Dust Mass

Accretion Rate

[OI] 63 µm line flux not dependent on M_{dust} derived from mm data (*Panic et al. 2009; Dent et al. 2005*)

Higher [OI] 63 µm line flux for higher Lacc (Garcia-Lopez et al. 2006)

First case study: HD169142

Fit photometry and images simultaneously with radiative transfer code MCFost (*Pinte et al. 2006, 2009*)

Disc structure: might host gap, beyond that (20-200 AU) continuous structure in which dust and gas are well-mixed.

Not a unique solution!

Gas thermal balance and chemistry with ProDiMo (*Woitke et al. 2009, Kamp et al. 2010*)

Different gas transitions trace different regions

Mm CO observations essential ingredient

Gas/dust ratio 22-50, M_{gas} 3-7 x 10⁻³ M_{sun} \Rightarrow still a gas-rich disc

Meeus et al. (2010)

Dust, Ice and Gas in Time

DIGIT (PI Neal Evans)

Besides embedded sources, sample also includes T Tauri and Herbig Ae/Be stars.

16 HAEBEs get full SED scans \Rightarrow covering a large part of rotational transition ladders (CO,...) and possible discovery of new solid state features

+8 HAEBEs scanned over the forsterite feature at 69 µm

Detected gas lines in HD100546

CO rotational diagram: Warm gas in the disc of HD100546

1 Temp. Fit: $T_{Rot} = 580 \pm 14 \text{ K}$ 2 Temp. fit: $T_{Rot} = 800 \pm 100 \text{ K} \& T_{Rot} = 300 \pm 12 \text{ K}$ Optical depth effect?Sturm et al. (2010)

First CH+ (J=5-4) detection in HAEBEs

CH⁺ in the disc of HD100546

Thi et al., to be submitted

Conclusions

- Gas lines in Herbig Ae/Be discs show a wide variety in line strengths, surprisingly not that many detected
- Ratio between line fluxes can be a diagnostic of UV flux, Temperature (PAH presence) and/or density
- Detailed modelling of the disc, using both Herschel and multi-wavelength data is essential to understand the disc, mm CO observations necessary to determine disc mass
- Protoplanetary disc chemistry is another essential ingredient in understanding gas dispersal mechanisms

Future directions

Detailed modelling of the individual sources, using:

- Multi-wavelength photometry and imaging
- IR interferometry
- Mm observations of CO and continuum

Poster 3 by Lyo: SMA imaging of HD135344BPoster 10 by Honda: COMICS/Subaru imaging of AB Aur

... ALMA will be helpful 'tool' to complement Herschel!

Herschel and PACS are great, many thanks to everyone who made this project possible!

The End

