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Transport mechanisms
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Mechanism Requirements Examples

Gas drag Young debris disks 

with gas

b Pic disk

Poynting-Robertson

drag

Tenuous debris 

disks

EKB dust disk

Stellar wind

drag

Debris disks of  late-

type stars

e Eri disk
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Collision-dominated vs transport-dominated disks

Zodiacal cloud around the Sun b Pic disk

Krivov, Mann, & Krivova, 

AAp 362, 1127 (2000)

Leinert & Grün, 

in Phys.of Inner Heliosphere (1990)

„Herschel and the formation of stars and planetary systems“                                                    Göteborg, Sweden, September  6 -9, 2010

A disk is collision-dominated,  if Tcoll< Ttrans

A disk is transport-dominated, if Tcoll>Ttrans

(this definition depends on the size range considered)



Show up 

in far-IR
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Size distribution
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Dense disks (most of the known disks) 

Jump at blowout radius 

Strength:  ~Tcoll/Tdyn

n(s) ~ s-3.5

(Dohnanyi 1969)



Show up 

in far-IR
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Size distribution
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Tenuous disks (at ≤ EKB disk level)

~0.1mm              Log (grain radius)                  ~1mm

sbreak sbreak > sblow if  t< v/c

(t<10-5 at ~100 AU)
(Kuchner & Stark 2010)

n(s) ~ s-2.5

(e.g. Wyatt 2005,

Strubbe & Chiang 2006)

sblow
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Size distribution
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Disks with sufficiently low optical depth

(or fractional luminosity)

are transport-dominated 

at all dust sizes

They will be dominated by much bigger grains
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Size distribution
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sblow does not exist

Dense disks around late-type stars (e.g., e Eri)

Show up 

in far-IR

Show up 

in mid-IR
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sbreak
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Size distribution
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Disks around late-type stars

are transport-dominated 

even at high optical depths

(or fractional luminosities), 

but only at small dust sizes

(relevant for near- and mid-IR observations)



Parent

ring

(“EKB”)
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Radial distribution
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Dense disks (most of the known disks) 

t~ r -1.5 (SB~r -3.5)

Strubbe & Chiang, ApJ 648, 652 (2006)



Parent

ring

(“EKB”)

„Herschel and the formation of stars and planetary systems“                                                    Göteborg, Sweden, September  6 -9, 2010

Radial distribution
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Tenuous disks

t~ r 0 (SB~r -2)

Briggs, ApJ 67, 610 (1962)

t~ r -2.5 (SB~r -4.5)

Strubbe & Chiang, ApJ 648, 652 (2006)



Parent

ring

(“EKB”)
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Radial distribution
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Tenuous disks with planets

t~ r -2.5 (SB~r -4.5)

Strubbe & Chiang, ApJ 648, 652 (2006)
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Radial distribution
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Transport  may primarily affect 

the size distribution

rather than the radial distribution
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Known  EKB…

16

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Mass of the

known EKB 

0.007 M 
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… and its simulated dust disk
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Blowout limit

Size distribution

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)
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… and its simulated dust disk
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Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Radial distribution
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… and its simulated dust disk
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Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

The dust disk from the known TNOs would have 

fractional luminosity ~3x10-8

and would be transport-dominated 



Mass of the

known EKB 

0.007 M 
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“True “(debiased)  EKB…
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Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Mass of the

“true” EKB 

0.12 M 



„Herschel and the formation of stars and planetary systems“                                                    Göteborg, Sweden, September  6 -9, 2010

… and its simulated dust disk
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Size distribution

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Blowout limit
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… and its simulated dust disk
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Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Radial distribution
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… and its simulated dust disk
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Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

The dust disk of the “true’’ EKB

may have fractional luminosity ~1x10-6

and can still be collision-dominated!
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Model “calibration” by dust measurements in-situ

24

Voyager data : Gurnett et al.,  GRL 24, 3125 (1997)

New Horizons data:  Poppe et al., GRL 37, 11101 (2010)
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Some of the Herschel/DUNES disks are “normal”…
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lmax ~  70-100 µm,

fd ~ 10-4...10-5

Marshall et al., in prep.



…but some others are tenuous and astonishingly cold

lmax  160 µm,

fd ~ 10-6...10-7

Marshall et al., in prep.



If  the dust was emitting as a blackbody,

max at 160 µm would require dust to be at

23 AU  from a    K8 star

76 AU  from a    G2 star

190 AU from an  F1 star

But  the dust is not emitting as a blackbody!

A realistic size distribution includes smaller and hotter grains.

The inferred distances would be too large...

Planetesimals can hardly form outside ~100 AU

Resolved images also suggest radii of ~100 AU

Challenges of the cold disks



Attempts to understand the cold disks 
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Krivov et al., in prep.

Source A Source B Source C Source D

Excess flux of four most reliable cold disks

observed by DUNES



Attempts to understand the cold disks 
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Tried planetesimal belts at r=100AU, Dr=0.2, e~0.1, 50%ice+50%sil

G150 = 1.50 MG30 = 0.30 MG5 = 0.05 M G1= 0.01 M

Krivov et al., in prep.

More massive disks (G150, G30, G5)

are collision-dominated

Their emission is at a right level, but too warm 

Less massive disks (G1)

are transport-dominated

Their emission is cold enough, but too low



Attempts to understand the cold disks 
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Tried to exclude dust in the inner parts of a dust disk (< 60 AU)

assuming that each belt is shaped by a Fomalhaut-like planet

Krivov et al., in prep.

Does not  really help



Attempts to understand the cold disks 
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Tried planetesimal belts at a larger distance: r=150AU

G30o = 0.30 MG5o = 0.05 M G1o= 0.01 M

Krivov et al., in prep.

Would need too large distances,

inconsistent with resolved images and

theoretical scenarios of planetesimal accretion



Attempts to understand the cold disks 
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Tried belts with low excitation (Thebault & Wu 2008):

Ge= 0.01 M(e = 0.02)    vs G1= 0.01 M(e = 0.1)

Krivov et al., in prep.

Would need too low eccentricities (e~0.001),

which would imply:

(a) The absence of planetesimals >1km in size

(b) The absence of giant planets in the inner gap



Attempts to understand the cold disks 
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Tried other dust compositions, large grains only, and blackbody 

Krivov et al., in prep.

Does not help,

unless we exclude grains < 100mm

or assume all grains to emit as blackbodies 



Attempts to understand the cold disks 
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Thus  the “cold disks” remain unexplained:

- Any mechanisms to remove mm-sized grains?

- Or their far-IR emission stronger that expected?

On any account, these disks seem to be

collision- rather than transport-dominated
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The e Eri system and its puzzling warm dust
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One known RV planet with a=3.4 AU (Hatzes et al. 2000)

One presumed planet at ~40 AU (Liou & Zook 1999)

A “Kuiper belt” at ~60 AU (Gillett 1986, Greaves et al., 1998, 2005)

Warm dust down to a few AU (Backman et al. 2009)

Warm dust that produces the IRS spectrum is located at a few AU

An “asteroid belt” there would be destroyed by the known RV planet
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Possible solution

Reidemeister, Krivov, Stark,  et al., AAp (submitted)

38

Warm dust could be transported from the “Kuiper belt”
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Modeled size and radial distribution

Reidemeister, Krivov, Stark,  et al., AAp (submitted)
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The disk is transport-dominated, despite  t ~2x10-4
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Modeled SED and brightness profiles

Reidemeister, Krivov, Stark,  et al., AAp (submitted)
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The model reproduces

all pre-Herschel data:

SED from mid-IR to sub-mm,

Spitzer/IRS spectrum,

Spitzer/MIPS radial profiles.

Will it be consistent with Herschel 

data?
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Summary
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• Transport mechanisms in debris disks include P-R drag (in 

tenuous disks) and stellar winds (in disks of late-type stars)

• A debris disk is transport-dominated, if  the transport   

timescale of dust is shorter than its collisional lifetime

• Sufficiently tenuous disks and all disks around late-type 

stars can be transport-dominated       

• Properties of transport-dominated disks differ significantly 

from those of collision-dominated disks. The main effect of 

transport is modification of size distribution of dust.  In 

tenuous disks, big grains become more important

• Herschel enters the realm of transport-dominated disks!


