Transport-dominated debris disks

Properties and implications for Herschel

Alexander "Sasha" Krivov, Christian Vitense, Martin Reidemeister, Jonathan Marshall, Carlos Eiroa, Jean-Charles Augereau, and the DUNES consortium

Outline

- Collision- vs transport-dominated disks
- The Edgeworth-Kuiper disk
- > The "cold" debris disks
- The ε Eridani disk
- Summary

Outline

- Collision- vs transport-dominated disks
- The Edgeworth-Kuiper disk
- The "cold" debris disks
- The ε Eridani disk
- Summary

Transport mechanisms

Mechanism	Requirements	Examples
Gas drag	Young debris disks with gas	β Pic disk
Poynting-Robertson drag	Tenuous debris disks	EKB dust disk
Stellar wind drag	Debris disks of late- type stars	ε Eri disk

Collision-dominated vs transport-dominated disks

A disk is collision-dominated, if $T_{coll} < T_{trans}$ A disk is transport-dominated, if $T_{coll} > T_{trans}$ (this definition depends on the size range considered)

"Herschel and the formation of stars and planetary systems"

Göteborg, Sweden, September 6 -9, 2010

Dense disks (most of the known disks)

Tenuous disks (at < EKB disk level)

Disks with sufficiently low optical depth (or fractional luminosity) are transport-dominated at all dust sizes

They will be dominated by much bigger grains

"Herschel and the formation of stars and planetary systems"

Dense disks around late-type stars (e.g., ε Eri)

Disks around late-type stars are transport-dominated even at high optical depths (or fractional luminosities), but only at small dust sizes (relevant for near- and mid-IR observations)

Dense disks (most of the known disks)

"Herschel and the formation of stars and planetary systems"

Tenuous disks

Tenuous disks with planets

Log (distance)

Transport may primarily affect the size distribution rather than the radial distribution

Outline

- Collision- vs transport-dominated disks
- The Edgeworth-Kuiper disk
- > The "cold" debris disks
- The ε Eridani disk
- Summary

Known EKB...

Mass of the known EKB ≈ 0.007 M $_{\oplus}$

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Size distribution

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Radial distribution

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

The dust disk from the known TNOs would have fractional luminosity ~3x10⁻⁸ and would be transport-dominated

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

"Herschel and the formation of stars and planetary systems"

"True "(debiased) EKB...

Mass of the known EKB ≈ 0.007 M $_{\oplus}$

Mass of the "true" EKB ≈ 0.12 M $_{\oplus}$

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Size distribution

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

Radial distribution

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

The dust disk of the "true" EKB may have fractional luminosity ~1x10⁻⁶ and can still be collision-dominated!

Vitense, Krivov, & Löhne, AAp (in press, astro/ph 1006.2220)

"Herschel and the formation of stars and planetary systems"

Model "calibration" by dust measurements in-situ

Outline

- Collision- vs transport-dominated disks
- The Edgeworth-Kuiper disk
- The "cold" debris disks Poster by Marshall

- \succ The ε Eridani disk
- > Summary

Some of the Herschel/DUNES disks are "normal"...

Marshall et al., in prep.

...but some others are tenuous and astonishingly cold

Marshall et al., in prep.

Challenges of the cold disks

If the dust was emitting as a blackbody, max at 160 µm would require dust to be at 23 AU from a K8 star 76 AU from a G2 star 190 AU from an F1 star

But the dust is not emitting as a blackbody! A realistic size distribution includes smaller and hotter grains. The inferred distances would be too large...

> Planetesimals can hardly form outside ~100 AU Resolved images also suggest radii of ~100 AU

Excess flux of four most reliable cold disks observed by DUNES

Tried to exclude dust in the inner parts of a dust disk (< 60 AU) assuming that each belt is shaped by a Fomalhaut-like planet

Tried belts with low excitation (*Thebault & Wu 2008*): $Ge= 0.01 M_{\oplus} (e = 0.02) \text{ vs } G1= 0.01 M_{\oplus} (e = 0.1)$ *Krivov et al., in prep.*

Tried other dust compositions, large grains only, and blackbody

Thus the "cold disks" remain unexplained:

- Any mechanisms to remove µm-sized grains?
- Or their far-IR emission stronger that expected?

On any account, these disks seem to be collision- rather than transport-dominated

Outline

- Collision- vs transport-dominated disks
- The Edgeworth-Kuiper disk
- The "cold" debris disks
- The ε Eridani disk
- Summary

The ϵ Eri system and its puzzling warm dust

One known RV planet with a=3.4 AU (*Hatzes et al. 2000*) One presumed planet at ~40 AU (*Liou & Zook 1999*) A "Kuiper belt" at ~60 AU (*Gillett 1986, Greaves et al., 1998, 2005*) Warm dust down to a few AU (*Backman et al. 2009*)

Warm dust that produces the IRS spectrum is located at a few AU An "asteroid belt" there would be destroyed by the known RV planet

Possible solution

Warm dust could be transported from the "Kuiper belt"

Reidemeister, Krivov, Stark, et al., AAp (submitted)

"Herschel and the formation of stars and planetary systems"

Modeled size and radial distribution

The disk is transport-dominated, despite $\tau \sim 2x10^{-4}$

Reidemeister, Krivov, Stark, et al., AAp (submitted)

"Herschel and the formation of stars and planetary systems"

Göteborg, Sweden, September 6 -9, 2010 **39**

Modeled SED and brightness profiles

The model reproduces all pre-Herschel data: SED from mid-IR to sub-mm, Spitzer/IRS spectrum, Spitzer/MIPS radial profiles. Will it be consistent with Herschel data?

Reidemeister, Krivov, Stark, et al., AAp (submitted)

Outline

- Collision- vs transport-dominated disks
- The Edgeworth-Kuiper disk
- > The "cold" debris disks
- The ε Eridani disk
- Summary

Summary

- Transport mechanisms in debris disks include P-R drag (in tenuous disks) and stellar winds (in disks of late-type stars)
- A debris disk is transport-dominated, if the transport timescale of dust is shorter than its collisional lifetime
- Sufficiently tenuous disks and all disks around late-type stars can be transport-dominated
- Properties of transport-dominated disks differ significantly from those of collision-dominated disks. The main effect of transport is modification of size distribution of dust. In tenuous disks, big grains become more important
- Herschel enters the realm of transport-dominated disks!