Water in low-mass starforming regions: Abundances and energetics

Lars E. Kristensen

R. Visser, E.F. van Dishoeck, U.A. Yildiz, S.D. Doty, G.J. Herczeg, F.-C. Liu, B. Parise, J.K. Jørgensen, T.A. van Kempen, C. Brinch, S.F. Wampfler, S. Bruderer, A.O. Benz, M.R. Hogerheijde and the WISH team

WISH

WISH team: E.F. van Dishoeck, Y. Aikawa, R. Bachiller, A. Baudry, M. Benedettini, A. Benz, E. Bergin, P. Bjerkeli, G. Blake, S. Bontemps, J. Braine, A. Brandeker, C. Brinch, S. Brudger, S. Cabrit, P. Caselli, J. Cernicharo, L. Chavarria, C. Codellin Caniel, C. Dedes, P. Encrenaz, A.M. di Giorgio, C. Dominilato oty, H. Frachtgruber, M. Fich, W. Frieswijk, A. Fuențe, T. Car echea, Th. De Graauw, F. Helmich, E Ho ogerheijde, T. Jacq, J. lørgensen, D. Henstone, A Sto, L. Kristensen, B. Larsson, B. Lefloch seille, C. McCoey, G. Melnick, D. Neufeld, B. Nisini, M. Werg, G. Olofsson, L. Pagani, O. Panić, B. Paris, J. Pearson, & Plane, C. Risacher, D. Salter, N. Sakai, J. Santiago, P. Saraceno, R. Shipman, M. Tafalla, F. van der Tak, T. van Kempen, R. Visser, S. Viti, S. Wampfler, M. Walmsley, F. Wyrowski, S. Yamamoto, U.A. Yildiz

WISH

What?

- Water In Star-forming regions with Herschel
- HIFI Guaranteed time key programme,
- PI: E.F. van Dishoeck (Leiden Observatory, NL)
- 425h being observed (HIFI and PACS)

Goal:

- Use H₂O to trace physical and chemical conditions

Why H₂O?

- Dynamical probe: outflow, infall, quiescent...
- Main reservoir of O
- Important for life on Earth

van Dishoeck et al. (in prep.)

Water

Target lines with different Eup to probe different T

Low-mass YSO - NGCI333

Low-mass YSO - NGCI333

H₂O in NGCI333 Kristensen et al. 2010 (A&A HIFI)

H₂O line profiles

- Complex line profiles !

- Broad,

v > 50 km/s

- Inverse P-Cygni profile: infall in the envelope

- Saturated absorption

H₂O decomposition

Velocity (km s⁻¹)

CO line profiles

Not as complex line profiles as H_2O

Medium + broad components detected

(Yildiz et al. 2010)

C¹⁸O line profiles

Low-mass YSO - NGCI333

H₂¹⁸O broad - origin in shocks

 H_2O sputtering and $O + H_2 \rightarrow H_2O$ at high T

Observed in conjunction with CH

Origin of shocks

Several possibilities:

- Jet
- Internal working surfaces
- Jet bow shock
- Shells along the outflow cavity induced by wideangle wind

Origin of shocks - medium NISH Single dish bow shock 0 1.5 CH₃OH jet $HCO^{+} 4-3$ x 0.2 outflow shell cavity shocks 750 AU 1 IWS T_{MB} (K) \oslash CS 5-4 x 0.3 **SMA** ~20000 AU hot core envelope **CH**₃OH 0.5 СН₃ОӉ 7−6 x 1.5 ᡪᢦᢦᠺᡗᡗᢥ natal core ᡀᡃ᠇ᠧᡗ᠊ᠲᡗ $H_2O 2_{02}-1_{11}$ x 1.0 O por rally mary low of UV-heated 0 5 15 10 cavity walls -2525 0 Jørgensen et al. (2007) Velocity (km/s) Kristensen et al. (2010)

H₂O - IRAS4B

H₂¹⁸O detected in one source Narrow (~1 km/s)

H₂O - IRAS4B

Origin of shocks - broad

Broad component in NGC1333 = IHV in IRAS04161 (Santiago-Garcia et al. 2009)

Origin of shocks

Possible interpretation:

Broad component: Shocks along cavity walls; > 1000 AU

Medium-broad component: Small-scale shocks close to the source; < 1000 AU

H₂O abundance - shocks

H₂O abundance - envelope

No clear envelope signs in H₂¹⁸O I₁₀ - I₀₁ profile

Strategy:

- absorption in $H_2O I_{11}-O_{00}$ for $x_{in}(H_2O)$
- upper limit on $H_2^{18}O 2_{02}$ - I_{11} for $x_{out}(H_2O)$

H₂O abundance - envelope

 $x_{in}(H_2O) = 10^{-5}$

 $x_{out}(H_2O) = 10^{-7}$

 $x_{out}(H_2O) = 10^{-8}$

 $x_{out}(H_2O) = 10^{-9}$

 $x(H_2O)(T < 100 \text{ K}) \sim 10^{-8}$ Well constrained

Liu et al. subm. Visser et al. in prep.

H₂O abundance - envelope

- $x_{out}(H_2O) = 10^{-8}$
- $x_{in}(H_2O) = 10^{-4}$
- $x_{in}(H_2O) = 10^{-5}$
- $x_{in}(H_2O) = 10^{-6}$

Modeling in progress ! (Visser et al. in prep.; next talk) WISH:

Outlook

Sample of 29 low-mass Class 0/I sources

18/29 sources observed in 557 GHz line

Data coming in... (No. 18 reduced today)

Outlook

Outlook

Next steps:

- Model line profiles
- Evolutionary trends ?
- Abundance variations ?
- Comparison with intermediateand high-mass SF regions

0.5

- HIFI is delivering spectacular data!
- •H₂O data reveal many surprises:
 - If it moves, it emits H_2O
 - H₂O abundances in shocks constrained
 - Hot core is hard to see (even in H₂¹⁸O)
- Further (detailed) modeling in progress (see next talk)