

(Sub)-millimeter line-surveys of the highmass star forming region G327.3-0.6

Suzanne Elisabeth Bisschop

Arnaud Belloche, Christian Endres, Rob Garrod, Rolf Güsten, Heiko Hafok, Stephan Heyminck, Jes Jørgensen, Karl Menten, Holger Müller, Rainer Rolffs, Peter Schilke, Ewine van Dishoeck, Friedrich Wyrowski

HERSCHEL AND THE FORMATION OF STARS AND PLANETARY SYSTEMS

Göteborg, 7-09-2010

- Introduction: Molecules in star forming regions
- Unbiased (sub)millimeter line-survey of the high-mass star-forming region G327.3-0.6

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J. A.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3	4 5	6	7	8	9+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} H_2 & & C_3 \\ AIF & & C_2H \\ AICI & & C_2O \\ C_2 & & C_2S \\ CH & & CH_2 \\ CH^+ & & HCN \\ CN & & HCO \\ CO & & HCO^+ \\ CO^+ & & HCS^+ \end{array}$	$c-C_3H$ C_5 $I-C_3H$ C_4H C_3N C_4Si C_3O $I-C_3H_2$ C_3S $c-C_3H_2$ C_2H_2 CH_2CN CH_2D^+ CH_4 HCCN HC_3N	$C_{5}H$ $I-H_{2}C_{4}$ $C_{2}H_{4}$ $CH_{3}CN$ $CH_{3}NC$ $CH_{3}OH$ $CH_{3}SH$ $HC_{3}NH^{+}$	$C_{6}H$ $CH_{2}CHCN$ $CH_{3}C_{2}H$ $HC_{5}N$ $HCOCH_{3}$ $NH_{2}CH_{3}$ $c-C_{2}H_{4}O$ $CH_{2}CHOH$	CH ₃ C ₃ N HCOOCH ₃ CH ₃ COOH C ₇ H CH ₂ OHCHO	$\begin{array}{c c} CH_{3}C_{4}H \\ CH_{3}CH_{2}CN \\ (CH_{3})_{2}O \\ CH_{3}CH_{2}OH \\ HC_{7}N \\ C_{8}H \\ CH_{3}C_{5}N \\ (CH_{3})_{2}CO \\ NH_{2}CH_{2}COOH? \\ HC_{0}N HC_{4}N \end{array}$
HCI H_2S HOCO+ H_2C_2O H_2C_2O NHHNC H_2CO H_2NCN NOHNO H_2CN NSMgCN H_2CS NaClMgNC H_3O^+ OH N_2H^+ NH_3PN N_2O SO^+OCSSiNSO_2SiO $c-SiC_2$	HCI H_2S KCI H_2S NH HNC NO HNO NOMgCNNSMgNCOH N_2H^+ PN N_2O SONaCNSO^+OCSSiN SO_2 SiOc-SiC ₂	HOCO ⁺ H_2CO H_2CO H_2CN H_2CS H_3O^+ NH_3 SiC_3 HOCO ⁺ H_2C_2O H_2NCN HNC_3 SiH_4 H_2COH	+ C ₅ N			

Overview chemistry during star formation

- Low temperatures: hydrogenation reactions of CO, O, N & C
- Intermediate temp: radical reactions in the ices
- High temp: gas phase reactions after evaporation

Chemistry useful a diagnostic tool but also interesting in itself: How complex do molecules become? Do/Can they end up in new planetary systems?

Figure 14

Cartoon representation of the evolution of material from the prestellar core stage through the collapsing envelope (size ~ 0.05 pc) into a protoplanetary disk. The formation of zeroth- and first-generation organic molecules in the ices is indicated with 0 and 1, and the second-generation molecules in the hot-core/corino region when the envelope temperature reaches 100 K, and even strongly bound ices start to evaporate, are designated 2. The grains are typically 0.1 μ m and are not drawn to scale. The temperature and density scale refer to the envelope, not to the disk (see also **Figure 4**). Once material enters the disk, it will rapidly move to the cold midplane where additional freeze-out and grain surface chemistry occur. All ices evaporate inside the (species-dependent) sublimation radius. For H₂O and trapped complex organic molecules, this "snow line" lies around a few astronomical units in a disk around a solar mass star. Figure by E. van Dishoeck & R. Visser.

Grain H₂O-rich

CO-ricl

Herbst & van Dishoeck, ARAA, 2009, 47, 427

Aim

Study the molecular composition of the surrounding material during the star formation process

Unbiased line-surveys:

- Large frequency coverage
- Low RMS
- Transitions of many different species (and isotopologues)

 Many transitions per species: excitation temperature, abundances, source sizes

The G327.3-0.6 star-forming region

- One of the chemically richest high-mass starforming regions known (Gibb et al. 2000)
- Strong and narrow emission lines (~ 5 km s⁻¹: minimal line-confusion)

Gibb et al., ApJ, 2000, 545, 309

G327.3-0.6 continued....

• Luminosity: 0.5-1.5 x10⁵ L •

• Distance: 2.9 kpc

• Mass: $\sim 500 \mathrm{M}_{\odot}$

Wyrowski et al., A&A, 2008, 454, L91 Grayscale: ¹²CO, contours: C¹⁸O (APEX)

Observations with the Atacama Pathfinder EXperiment (APEX)

APEX 1: 213 - 267.5 GHz

APEX 2: 270 - 315 & 335 - 362 GHz

CHAMP+: 623 -715 & 784 - 853 GHz

Data analysis

- Line-assignements: CDMS, JPL
- MyXCLASS package (Comito et al. 2005)
- Most molecules: 1/2 component fit, source size, T, column density, line width: hot core species ~2" with T~100-150 K
- 44 species detected, 52 isotopologues, 23 vibrationally excited species (e.g. HCN,HCO⁺ to (CH₃)₂CO)
- ~60-70% of lines assigned \Rightarrow 30+% U-lines

The incredible richness of G327.3-0.6

Overview detected species

1 atom: C

- 2-atoms: CN, SiO, SO, CS, NO, NS, CO
- 3-atoms: HCN, HNC, SO₂, H₂S, OCS, CCH, HCO⁺, N₂H⁺, HCS⁺, HDO/H₂¹⁸O, NH₂

4-atoms: HNCO, NH₂D, H₂CO, H₂CS

5-atoms: HC₃N, CH₂NH, H₂CCO, HCOOH, c-C₃H₂, l- C₃H₂

6-atoms: CH₃CN, CH₃NC, HCONH₂, CH₃SH, CH₃OH

Continued....

7-atoms: C_2H_3CN , CH_3CHO , CH_3NH_2 , $c-C_2H_4O$, CH_3CCH

8-atoms: HCOOCH₃

9-atoms: C_2H_5CN , CH_3OCH_3 , C_2H_5OH

10-atoms: CH₃CH₃CO

Many hydrogen-rich organics indicative of hydrogenation processes on grain-surfaces!

Case study I: CH₃OCH₃

- CH₃OCH₃ is formed on the surfaces of icy grains at higher temperature 20-30 K
- It evaporates ~70 K and destroyed in the gas phase
- As CH₃OH evaporates it is formed in the gas phase

Is there observational evidence for the grain surface / gas phase formation scenario?

Garrod et al., ApJ, 2008, 682, 283

CH₃OCH₃ in G327.3-0.6

- Ground state:
 - * 251 unblended lines detected over whole freq range
- Torsionally excited (new lab data by Endres et al. in prep):
 - ★ v11=1 (288 K, infrared inactive): 102 unblended lines
 - ★ v15=1 (346 K, infrared active): 43 unblended lines

CH₃OCH₃ continued

CH₃OCH₃ is detected in all atmospheric windows observed with transition spanning a large range in excitation energies

Excitation of CH₃OCH₃

- Comp 1: E_u> 200 K can be very well fit with a simple model with T~100 K and N~4.0x10¹⁸ cm⁻² and a source size of 2.3" (LTE)
- Comp 2: E_u< 200 K come from a region with a temperature of ~ 60 K and N~4.5x10¹⁶ cm⁻² for 4.0" (LTE??)

$CH_3OCH_3v_{11}=1$ and $v_{15}=1$ detected for the first time!

҄Ӊѹ

 $C_H CN v =$

292.10

59.25

821.80

821.75

\$59.26

668.45

Recent lab. measurements by Endres et al. in prep. • $v_{11} = 1$ detected in all bands • $v_{15}=1$ detected at all but the highest frequencies Excitation well

described by identical model to the ground state

Summary CH₃OCH₃

• Main component of the ground state is tracing emission that has a temperature of 100 K

• A cooler more extended component is also present

Two formation mechanisms/ (non)-LTE excitation effects? Future work: modeling the CH₃OCH₃ with a more realisitic source model

Case study II: C₂H₅CN in G327.3-0.6

- Ground state:
 - ★ 324 unblended lines detected over whole freq range
 - Vibrationally / torsionally excited $v_{13}=1(298 \text{ K}, \text{CCN in-plane}) \& v_{21}=1 (303 \text{ K}, \text{torsion})$:

★ 237 detected lines at low frequencies (no laboratory data above 500 GHz)

Previously detected toward SgrB2(N) and W51 e2 (Mehringer et al. 2004, Demyk et al 2008)

Example II: C₂H₅CN

- v=0:
- Consistent with a single temperature and column density over a large excitation range
- Optically thick lines of all energies appear to probe the same source size of 2.3"
- ¹³C isotopes are also detected and fit the same model

Vibrationally and torsionally excited C₂H₅CN, v₁₃=1 and v₂₁=1

- Lines stronger than expected based on the ground state fit
- Some pumping mechanism?

Summary C₂H₅CN

The ground state is tracing emission with ~125 K, consistent with a grain evaporation origin of the gas

The column densities are within error the same for ground and vibrational states, but the excitation temperatures are not!

Does the vib/torsionally excited state arise from the same region as the ground state?

Future work: compare with related species such as C₂H₃CN!

General conclusion

 Detailed study of the excitation of complex organics in a line-survey gives a plethora of information of the whereabouts and possible formation mechanism of species

Interpretation of line-surveys is tricky and not straightforward!

Future line-surveys with Herschel and ALMA will serve as excellent to test our understanding of astrochemical processes!