

since 1558

g Eri in the Light of Herschel

S. MÜLLER, T. LÖHNE & A. V. KRIVOV

Astrophysical Institute, Friedrich Schiller University, Schillergaesschen 2-3, 07745 Jena, Germany

on behalf of the DUNES consortium

Abstract

DUNES (DUst arond NEarby Stars) is an OTKP for the Herschel mission concentrating on debris disks. Such disks are the end stage of planet formation. Especially Spitzer has shown that they are a common featur around main-sequence stars. They are observed by dust thermal emission in the IR. Dust is steadily produced by mutual collisions among large, invisible planetesimals. In recent years we have developed a new way to modeling the whole debris disk, dust and planetesimals (Müller et al. 2010). Here we apply this approach to the prominent debris disk around the sun-like star q¹ Eri that was observed with PACS and SPIRE at 70, 100, 160, 250, 350, and 500 µm in scan-map mode.

The System

Star:

about 2 Gyr old F8V star at 17.43 pc

Planet (Mayor et al. 2003, Butler et al. 2006): one 0.93 M_{Jup} mass at a = 2.03 AU with e = 0.1

Disk:

IR-excesses was detected in the mid- and far-IR and in the radio. A mid-IR spectrum was obtained with IRS. Both HST and Spitzer were able to

Modeling Approach

We use our collisional code ACE to simulate the collisional evolution of the q¹ Eri disk starting with an initial set up of planetesimals. The resulting SED and brightness profiles are then computed with SEDUCE and SUBITO. The procedure works as follows:

Conclusions

Using the collisional approach we were able to reproduce new Herschel observations together with already existing data on the q¹ Eri debris disk with a planetesimal belt between 75 – 125 AU. In particular, SED and surface brightness profiles extracted from the new PACS images were modeled. The results are in general agreement with the outcome of classical modeling approaches. The extraordinarily high required disk mass may be an indication for the collisional evolution operating over much shorter timescales than the suggested stellar age of 2 Gyr. The lack of emission in the mid-IR in the SED and in the central parts of the 70 and 160 µm profiles can be a Deutsche Akademische hint on an additional, unresolved inner disk component. Appreciable amounts of water ice Austauschdienst DAAD, the ISSI. SM is admixtures are essential in the model. PACS spectroscopy follow-up observations have been funded by a graduate fellowship of the requested to search for possible spectral features which are expected for ice in this spectral State of Thuringia.

resolve the disk marinally.

References

Augereau et al., A&A in prep. Butler et al., Liseau et al., A&A 687, 608, 2008 Liesau et al., A&A 518, L132, 2010 Mayor et al., Müller et al., ApJ 708, 1728, 2010 Vitense et al., ApJ ??, ??, 2010

Acknowledgements

The work for this project was partly supported by the Deutsche Forschungsgemeinschaft DFG, the

Collisional Modeling - Dust Distribution

region.

In our best fit a silicate-ice mixture (50:50) was requrired. The material strength was relatively low. Most large objects remain within the planetesimal belt (75 – 125 AU), while grains < 0.7 µm are quickly removed from the system by stellar radiation pressure. The planetesimals' dynamical excitation was low (e < 0.05).

The best fit model comprises a total disk mass of 934 M_{\oplus} , implying an initial disk mass of 1,413 M_{\oplus} . This is unrealistically high, since the disk would probably be object to gravitaional instability. However, assuming the disk to evolve for only 500 Myr the disk mass can be reduced to realistic values of 102 M_{\oplus} (initially 206 M_{\oplus}).

Comparison with Classical Modeling

Traditionally, debris disks are modeled under the assumption of dust distributions of the kind $N \sim r^{-\xi} s^{-\eta}$. In the DUNES modeling team two routines have been developed:

GRaTer (LAOG, France): Bayesian analysis of the parameter space **3.9** x 10⁻² M_{\oplus} between 74 – 600 AU with $\xi = 2.0$ and $\eta = 1.3$

SAnD (Kiel, Germany): Simulated annealing 2.9 x 10⁻² M_{\oplus} between 4 – 184 AU with $\xi = -1.2$ and $\eta = 1.8$ caution: outward increasing surface density

Like in the collisional approach silicate-ice mixtures improve the fits.

The classical approach provides higher dust masses. This is because the power-law size distributions are in general flatter than the simulated ones.

Advantages and disadvantages of the two approaches:

Collisional Modeling	Classical Modeling
deep physical modeling from the sources	Isst exploration of large parameter space
realistic description of disk properties	Imited initial constraints
information about unseen planetesimals	Simplistic description of disk properties
computationally demanding	8 no direct link to planetesimals

Collisional Modeling - Thermal Emission

SED and brightness profiles along the long and short (only marginally resolved) axis show reasonalbe agreement (solid lines). Still, there is a lack of short wavelength emission in the mid-IR SED and the 70 and 160 m profile, which cannot be explained with stellar emission. A possible solution is an additional, unresolved inner component. Adding a 130 K blackbody (≜ 5 AU) improves the fit significantly (dotted lines). However, required dust mass appears unrealistically high. It corresponds to ?? times the presumed Kuiper belt (Vitense et al. 2010), or ?? times the asteroid belt.