First Solar System observations with Herschel

Paul Hartogh, Jacques Crovisier, Emmanuel Lellouch, Nicolas Biver, Dominique Bockelée-Morvan, Miguel de Val-Borro, Bruce Swinyard, Sunil Sidher, Helmut Feuchtgruber, Christopher Jarchow, Raphael Moreno, Miriam Rengel, Bart Vandenbussche and the HssO Team

AAS 216th Meeting, 23-27 May 2010, Miami, FL

HssO Participants

- Marek Banaszkiewicz¹,
- Frank Bensch²
- Edwin A. Bergin³
- Francoise Billebaud⁴
- Nicolas Biver⁵
- Geoffrey A. Blake⁶
- Maria I. Blecka¹
- Joris Blommaert²⁰
- Dominique Bockelée-Morvan⁵
- Thibault Cavalié⁴,
- José Cernicharo⁷ (mission scientist)
- Régis Courtin⁵
- Jacques Crovisier⁵ (coordinator comets)
- Gary Davis⁸
- Leen Decin²⁰
- Martin Emprechtinger
- Pierre Encrenaz⁹ (mission scientist)
- Thérese Encrenaz⁵
- Helmut Feuchtgruber
- Trevor Fulton
- Armando Gonzalez
- Thijs de Graauw¹⁰
- Paul Hartogh¹¹ (HSSO PI, coordinator Mars)
- Damien Hutsemékers¹²
- Christopher Jarchow¹¹
- Emmanuël Jehin¹²
- Mark Kidger²²
- Michael Küppers¹¹

- Emmanuel Lellouch⁵ (coordinator outer planets)
- Luisa M. Lara
- Sarah Leeks
- Dariusz C. Lis⁶
- Rosario Lorente²²
- Jean Manfroid²¹
- Alexander S. Medvedev¹¹
- Raphael Moreno⁵
- David Naylor¹⁴
- Ganna Portyankina
- Glenn Orton¹⁵
- Miriam Rengel¹¹
- Hideo Sagawa
- Miguel Sánches-Portal²²
- Rudolf Schieder¹⁶
- Sunil Sidher¹⁷
- Daphne Stam¹⁸
- Bruce Swinyard¹⁷
- Slawomira Szutowicz¹
- Nicolas Thomas¹⁹
- Miguel de Val-Borro
- Bart Vandenbussche²⁰
- Eva Verdugo²²
- Christoffel Waelkens²⁰
- Helen Walker

Outline

• Comet C/2006 W3 Christensen PACS/SPIRE

• Comet C/2008 Q3 Garradd with HIFI

• Neptune methane with PACS

• Mars CO and water with SPIRE

Observations of comet C/2006 W3 (Christensen)

Credit : Rok Palcic

- A long-period comet (P = 140,000 yr) from the Oort cloud
- Distant : perihelion on 6 Jul. 2009 at 3.13 AU from the Sun
- Bright (mv = 8.5 @3.1 AU) suggesting activity driven by the release of hypervolatiles (CO, CO₂)
- OH Nançay observations @3.3 AU pre-perihelion:

water production rate $Q(H_2O) = 5 \times 10^{28}$ mol/s

•A weak target for investigation of H₂O lines using PACS/SPIRE on Herschel

Observations of C/2006 W3 (Christensen) with the Herschel Space Observatory

• PACS (1 & 8 Nov. 2009)

- Photometer maps (red & blue)

- Dedicated line spectroscopy : 5 water lines at 108.15, 138.6, 174.75, 179.65 and 180.61 μm
- SED range scans
- SPIRE (8 Nov. 2009)
 - High resolution spectral scan, sparse image sampling

Comet imaging with PACS The dust coma is resolved

1' x 1' (1'=1.6 x10⁵ km)

1' x 1'

PACS & SPIRE SEDs: large particles

Model for amorphous grains with 0.9 mm diameter fits best

Supporting observations at Nançay C/2006 W3 (Christensen) 090210-090419 and IRAM ΟH

-5

-5

10

1.5728 10⁵

Velocity [km s⁻¹]

 $(km s^{-1})$

:/2006W3(Christensen: CH₃OH at 157GHz: 14.4 Sep.2009 Rest Frequency (MHz) 1.5727 10 1.5726 10

Velocity (km/s)

CH₃OH

006W3(Christensen: CO(2-1) at 230.5GHz: 14.87 Sep.2009

5

5

10

• 2-Jan.-2009 \rightarrow 19 Apr. 2009: OH (18 cm) radical at Nançay $r_h = 3.60-3.20 \text{ AU}$: $Q_{H20} = 5 \pm 1 \times 10^{28} \text{ at } r_h = 3.3 \text{ AU}$ •12 \rightarrow 14 Sep. 2009: HCN, CH₃OH, CS, H₂S, CO at 30-m r_h = 3.2 AU, D = 2.58 AU • 29 Oct. 2009 : HCN and CO at IRAM 30-m $r_{h} = 3.32 \text{ AU}, D = 3.48 \text{ AU}$

 \checkmark Measure pre-perihelion H₂O production rate

Investigate species of different volatilities to constrain sublimation processes in comet nuclei

Measure the gas temperature and velocity to interpret H₂O Herschel observations

 \rightarrow T_{gas} = 18 K v_{gas} = 0.5 km/s

Spectroscopy with PACS and SPIRE H₂O lines are not detected

- PACS : Expected strongest H_2O line : 2_{12} - 1_{01} @179.65 μ m = 1669.9 GHz
- SPIRE: Expected strongest H_2O line : $1_{11}-0_{00}$ @37.1 cm⁻¹ = 1113 GHz
- Excitation and radiative transfer modelling with a coma temperature of 18 K
- 3-sigma upper limits on the water production rate : PACS: $Q(H_2O) < 1.2 \times 10^{28} \text{ mol/s}$ SPIRE: $Q(H_2O) < 6 \times 10^{28} \text{ mol/s}$

C/2006 W3 (Christensen) - Results

Spectroscopy

Strong pre-post perihelion asymmetry in water production at 3.3 AU

 \rightarrow Pre-perihelion : sublimation from icy grains ?

✓ coma dominated by CO : Q(CO)/Q(H₂O) > 300 %

(2 to 20 % in comets at ~ 1 AU from the Sun)

coma strongly enriched in species more volatile than water

(compared to comets at ~ 1 AU)

- \rightarrow analogy with Hale-Bopp coma composition at 3.3 AU
- \rightarrow suggests Christensen 's nucleus to be CO-rich and of very low thermal inertia

Photometry (preliminary)

- Nucleus radius ~ 20 km
- ✓ Dust production rate : ~ 850 kg/s (carbon) ~ 920 kg/s (olivine)
- ✓ Dust-to-gas ratio ~ 0.5 − 1.4

Bockelee et al. 2010, A&A in press

AAS 216th Meeting, 23-27 May 2010, Miami, FL

C/2008 Q3 (Garradd)

- A long-period comet (P = 190,000 yr) from the Oort cloud
- Distance : perihelion on 23 Jun. 2009 at 1.8 AU from Herschel

Credit: JPL Wide-field Infrared Survey Explorer (WISE)

- Rather Bright (mv = ~7 @1.8 AU)
- Date of observations: 20 27 July 2010 at 1.8 AU (Sun) and 1.9 AU (Herschel)

HIFI observations

• Water lines:

- 110-101 (ortho) 556.936 GHz 38.1 " (17000 km)
- 111-000 (para) 1113.343 GHz 19.2 " (34000 km
- 212-101 (ortho) 1669.9 GHz 12
- 19.2 " (34000 km) 12.7 " (51000 km)
- First detection in a comet (lower 2 lines)
- Better constraints on excitation models

All lines in FSw mode

OTF map of C/2008 Q3 at 557 GHz

- Contours: 0.2 K km/s from 0 1.8 K km/s
- •Map width: 300000 km

•Constrain Xne and neutral gas temperature by minimizing radial variation of water production rate at different offset positions AAS 216th Meeting, 23-27 May 2010, Miami, FL

Water production rate for Xne = 0.2 (black) and 1

Black: Xne = 0.1 – 0.2, T=15 - 25 K

Optimal fit of observation from 20 July 2009

Expansion velocity = 550 m/s, Xne = 0.2 and T=15 K $Q[H2O] = 2.73 \pm 0.01 \times 10^{28/s}$

Production rates at 22/27 July 2009

22 July 2009 (1113 GHz) : 1.8 ±0.03 x 10^28 / s

27 July 2009 (1670 GHz) : 2.1 ±0.30 x 10^28 / s

27 July 2009 (1113 GHz) : 1.7 ±0.03 x 10^28 / s

Results on C/2008 Q3

HIFI observations of Comet C/2008 on 20-27 July 2009

- First detection of the 111-000 and 212-101 rotational transitions in a comet
- **Derived parameters:**
 - Neutral gas temperature: 15 K
 - Gas expansion velocity: 0.55 km/s
 - Water production rates: 1.7 2.7 x 10²⁸/s

Decrease of production rates from 20 – 27 July 2009

Hartogh et al. 2010, A&A in press

Methane in the stratosphere of Neptune

- Methane is the third most abundant species in the Giant Planets, after H₂ and He; it is very abundant in Neptune's troposphere (~ 4%), being responsible for Neptune's color
- In Neptune's stratosphere, CH₄ has been difficult to measure (UV, thermal IR)
 - Factor-of-ten range in reported abundances (0.6-5 x 10⁻³) !
- Yet, methane is a key species, being at the origin of stratospheric hydrocarbon photochemistry
- Furthermore, its stratospheric abundance is meteorologicallyconstrained, reflecting its partial condensation at the temperature minimum ("cold trap")
- Herschel has provided a new and accurate measurement of CH₄ in Neptune's stratosphere from the first observation of the methane rotational lines
 AAS 216th Meeting, 23-27 May 2010, Miami, FL

CH₄ - PACS

Obs. date: 30 - 31 October 2009

P(T) and Molecular profiles

AAS 216th Meeting, 23-27 May 2010, Miami, FL

CH₄ - Results

The retrieved stratospheric methane mixing ratio : $qCH_4 = 1.5 \pm 0.2 \times 10^{-3}$ First precise measurement of CH_4 in Neptune's stratosphere

-smaller than the troposphere value (2%) , because of the condensation at the cold trap.

-nevertheless, exceeds the cold trap saturation value by factor 10

Most probable origin of this elevated value : CH₄ leaks from the warmer southern region (i.e. +6K from Orton et al 2007) and is redistributed planetwide by global circulation *Lellouch et al., 2010, A&A in press*

SPIRE Mars observations

- First continuous disk averaged spectrum from 450 1550 GHz
- Performed on 6 November 2009 (OD 176)
- Detection of water and carbon monoxide lines

Line Number	Species	Transition	Frequency (GHz)
1	Ortho H ₂ O	1_{10} - 1_{01}	556.94
2	CO	J = 6 - 5	691.491
3	$Para H_2O$	2_{11} - 2_{02}	752.03
4	CO	J=7-6	806.65
5	CO	J=8-7	921.8
6	$Para H_2O$	2_{02} -1 ₁₁	987.93
7	CO	J=9-8	1036.91
8	Ortho H_2O	3_{12} - 3_{03}	1097.37
9	$Para H_2O$	$1_{11} - 0_{00}$	1113.34
10	CO	J=10-9	1152.01^*
11	Ortho H_2O	3_{12} - 2_{21}	1153.13
12	Ortho H_2O	3_{21} - 3_{12}	1162.91
13	$Para H_2O$	4_{22} - 4_{13}	1207.64
14	$Para H_2O$	2_{20} - 2_{11}	1228.79
15	CO	J=11-10	1267.01
16	H_2O	6_{25} - 5_{32}	1322.06
17	CO	J=12-11	1382.0
18	H_2O	5_{23} - 5_{14}	1410.6

AAS 216th Meeting, 23-27 May 2010, Miami, FL

SPIRE spectrum of Mars

AAS 216th Meeting, 23-27 May 2010, Miami, FL

Detection of 3_{12} - 2_{21} and 3_{21} - 3_{12} water lines and 50, 100 and 200 ppm simulations

Detection of CO 11-10 line and simulations for 450, 900 and 1800 ppm

Results SPIRE on Mars

- SPIRE can observe bright sources llike Mars
- First continuous 450 1550 GHz spectrum
- Water volume mixing ratio best fit: 100 ppm
- Carbon monoxide mixing ratio best fit: 900 ppm *Swinyard et al., 2010, A&A in press*

HssO: What next?

• Chemistry in the martian atmosphere

• Extended sources in comets

• Saturn, Titan and its environment

Source of water in Jupiter's and Neptune's stratosphere

Visit our HssO web site

- http://www.mps.mpg.de/projects/herschel/HssO/index.htm
- Hartogh et al, 2009. Planetary and Space Science 57, issue 13, 1596-1606.

AAS 216th Meeting, 23-27 May 2010, Miami, FL

Additional material

AAS 216th Meeting, 23-27 May 2010, Miami, FL

Coma Expansion Velocity

- Self absortion makes the lines asymmetric
- The redshifted side is not opaque. It is used to determine the outgassing velocity.
- It has been determined to be 550 m/s.

Line excitation mechanisms

• Water-water collisions dominate in inner coma

 Infrared fluorescence by solar radiation and water electron collisions contribute to the detected emissions from the outer coma

Level populations of para water

AAS 216th Meeting, 23-27 May 2010, Miami, FL

Modeling the line shape

- Two methods:
 - Accelerated Monte Carlo radioative transfer (Hogerheijde & van der Tak, 2000; Bensch & Bergin 2004)
 - Sobolev escape probability method (Bockeleé-Morvan 1987; Biver 1997).
- Results very similar (within 5 %)

Model Inputs

- Gas density profile: Haser model
- Expansion velocity and neutral gas kinetic temperature constant in coma
- Ortho-to-para water abundance ratio: 3 (Crovisier et al, 1998).
- Molecular data from LAMDA (Schöier et al. 2005)
- Electron densitiv profile from 1P/Halley according to Biver (1997)
- Electron density profile scaled to C/2008 Q3
- Xne is a free scaling parameter in the model, derived from radial brightness distribution (Biver, 2007)
- MC-code: water-electron collisions from Faure et al. (2004)
- IR pumping rates (solar radiation) from Zakharov et al, (2007)