Star Formation: Early Herschel Results From ESLAB 2010

Paul M. Harvey

With help from many ESLAB presenters!

The "Problem"

- 7 Key Programs + GT and PV data
- 21 talks and 26 posters on star formation w/PACS and SPIRE
- Large Surveys
 - Molinari/HIGAL
 - André/Gould Belt
- Focused Surveys
 - HOBYS/OB Star Formation
 - HOPS/Orion Survey
 - EPOS/Youngest Clouds
 - SPIRE GT-PV/FTS Spectra
 - DIGIT/PMS PACS Spectroscopy
- And all mostly just Science Demo Data ~ 1 month!

HIGAL

 $\ell = 30^{\circ}$ and $\ell = 59^{\circ}$ (eventually $\ell = -60^{\circ}$ to $+60^{\circ}$)

Davide Elia - ESLAB 2010 May 6th, 2010

$\ell = 59^{\circ}$

Davide Elia - ESLAB 2010 May 6th, 2010

HIGAL (Far-IR Color/Color)

IRDCs with Hi-GAL: Shadows... and Lights

- The earliest stages of massive SF (Peretto+ 2010, Wilcock+ 2010)
- The lifetime of pre-stellar phase (Olmi+ 2010)

Dust temperature and column density structure of IRDCs

The Herschel Gould Belt Survey

http://gouldbelt-herschel.cea.fr/

SPIRE/PACS 70-500 μ m imaging of the bulk of nearby (d < 0.5 kpc) molecular clouds (~ 160 deg²), mostly located in Gould's Belt.

Motivation: Key issues on the early stages of star formation

- What determines the distribution of stellar masses = the IMF ?
- What generates prestellar cores and what governs their evolution to protostars and proto-brown dwarfs ?

Ph. André - ESLAB 2010 Herschel First Results - ESTEC - 4 May 2010

"First images" from the Gould Belt Survey

1) Polaris translucent cloud (d ~ 150 pc)

23 Oct 2009

Red : SPIRE 500 μm Green : SPIRE 250 μm Blue : PACS 160 μm

 \sim 7 deg² field

Ward-Thompson et al. 2010 Miville-Deschênes et al. 2010 A&A special issue

Ph. André - ESLAB 2010 Herschel First Results - ESTEC - 4 May 2010

"First images" from the Gould Belt Survey

2) Aquila Rift star-forming cloud (d ~ 260 pc)

24 Oct 2009

cf. http://oshi.esa.int Red : SPIRE 500 μm Green : SPIRE 160 μm Blue : PACS 70 μm

~ 3.3 deg x 3.3 deg field Könyves et al. 2010 Bontemps et al. 2010 André et al. 2010 A&A special issue

Aquila/Serpens-South dark filament: A rich protocluster in the making

Spitzer/IRAC 8 µm

SPIRE 250 μm + PACS 160/70 μm

Polaris Flare (D.Ward-Thompson) MCLD 123 and Loop 1

Column density and temperature

Range: ~6-12 x 10²¹cm⁻²

Range: ~10-12K

Rich clusters of protostars in the Rosette

Where are the massive prestellar dense cores?

Not a single massive prestellar core has been identifed in the Cygnus X and NGC 6334 molecular complexes (Motte et al. 2007; Russeil et al. 2010).

In Rosette, we find 3 massive prestellar dense cores: ~0.22 pc, ~30 M_{\odot}. They are cold (~13 K) and dense (~10⁵ cm⁻³) and may thus form high- to intermediate-mass stars. Statistical lifetime ~ 8 x 10⁴ yr, > in Cygnus X, < in nearby clouds.

We also discovered a handful of warm starless cores: ~0.14 pc, 1-9 M_{\odot} , 27 K

HOPS Observations

PACS imaging of 278 protostars:

- Spitzer-identified protostars with extrapolated fluxes > 42 mJy at 70 μm
- 5' to 8' square fields
- Medium (20"/s) scan rate
- 70 and 160 μm scans & cross-scans

PACS spectroscopy of 37 protostars:

- 25 face-on sources, 12 at other inclinations
- Source fluxes from 100 mJy to ~10 Jy
- Spectral coverage from 57 to 185 μm
- Water, OH, CO, and [OI] (63 $\mu m)$ lines

Sources sample environments from isolated to clustered

HOPS Science Demo Field

V380 Ori / HH 1-2 region in L1641

> 8' square field centered at 5^h36^m22.1^s, -6^o45'41"

NEWFIRM 2.2 μm PACS 70 μm PACS 160 μm

	L (L _{sun})	dM _{env} /dt (M _{sun} /yr)	L _{acc} / L
165	12	2 x 10 ⁻⁷	0.1
166	23	4 x 10 ⁻⁷	0.2
168	84	3 x 10 ⁻⁵	~ 1
203	23	2 x 10 ⁻⁵	~ 1

- Modeled SEDs with B. Whitney's RT code
- Key parameters
 - Luminosity
 - Envelope density
- With stellar parameters, derive
 - Envelope infall rate
 - Accretion luminosity
- HOPS 168, 203: $dM_{disk}/dt = dM_{env}/dt$ implies $M_{star} \sim 0.1 M_{sun}$
 - Episodic accretion would allow larger masses

Abergel/Habart - Evolution of ISM Dust SPIRE/FTS observation

J2000 Dec.

Single pointing

(coverig all the Bar)

- FWHM beam-widths (SSW : 17-21'') (SLW : 29-42'')
- High resolution

(∆σ**=0.04 cm**⁻¹)

- 2 scans/repetition
- Duration: 266.45 s

data reduction & line fitting E. Polehampton, D. Naylor

Average apodized spectra on the three arrays on the Bar (corrected for obliquity effects)

A wealth of bright narrow ¹²CO & ¹³CO rotational lines

Zoom of the average apodized spectra

most of the C¹⁸O (blended with ¹³CO), some C¹⁷O, fine structure lines of C and N+
radicals and molecules : CH⁺, CH, H₂O, H₂S, HCO⁺, (HCI, HCN, CN..) & hydrocarbons (C₂H)

EPoS

The Search for the Earliest Phases of Massive Star Formation Henning et al.

ISOSS J18364-0221: The boon of high spatial resolution in the FIR

I18223-1243: The possible sequence of high-mass star formation on display

Highlights from DIGIT (Dust, Ice, and Gas in Time) Herschel-PACS Full Spectral Scans of Young Stars

DK Cha: Emerging from its Cocoon?

Α

NGC 6334I: Foreground Absorption and Outflow

Preliminary analysis indicates low water o/p ratio in the foreground gas

Prominent absorption in the blue lobe of the outflow (e.g., H_2O , H_2S) Warm outflow: $3_{12}-3_{03}$ absorption (E₁=197 K) Water emission from the hot core gas

Emprechtinger et al.

Many Thanks TO ESA, NASA, The Instrument Teams, And the ESA and NASA Herschel Science Centers

