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FRAGMENTATION IN KINEMATICALLY COLD DISKS

D. Huber and D. Pfenniger

Geneva Observatory, CH-1290 Sauverny, Switzerland

Abstract

Gravity is scale free. Thus gravity may form similar
structures in self-gravitating systems on different scales.
Indeed, observations of the interstellar medium, spiral
disks and cosmic structures, reveal similar characteristics.
The structures in these systems are very lumpy and in-
homogeneous. Moreover some of these structures do not
seem to be of random nature, but obey certain power laws.
Models of slightly dissipative self-gravitating disks

show how such inhomogeneous structures can be main-
tained on the kpc-scale. The basic physical processes in
these models are self-gravity, dissipation and differential
rotation. In order to explore the structures resulting from
these processes, local simulations of self-gravitating disks
are performed in 2D and 3D. We observe persistent pat-
terns, formed by transient structures, whose intensity and
morphological characteristic depend on the dissipation
rate.
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1. Introduction

Molecular clouds reveal hierarchical structures, obeying
power laws over several orders of magnitude in scale. Ob-
servations suggest, that the hierarchical structure of kine-
matically cold media is not only present in Milky Way
molecular clouds, but is also found in other systems and
on larger scales. Vogelaar & Wakker (1994) found, e.g.,
perimeter-area correlations in high-velocity clouds. Power-
law power spectra were found in the Small and the Large
Magellanic Cloud by Stanimirovic et al (1999) and Elme-
green et al. (2001), respectively. Furthermore, measure-
ments of the HI distribution in galaxies of the M81 cluster
reveal fractal structures on the galaxy disc scale (Westp-
fahl et al. 1999). The matter on cosmic scales is also hi-
erarchically organized. A common feature of the ISM and
the cosmic structure is, that the matter distribution can
be characterized by a comparable fractal dimension. All
this suggests, that a general scale free factor is mainly
responsible for the matter distribution and the dynamics
of cosmic structures, disks and molecular clouds. There is
only one factor being able to have a dominant influence on

all these scales, namely gravity. The local shearing sheet
experiments of Toomre & Kalnajs (1991, hereafter TK)
show that gravity in combination with shearing and dissi-
pation can develop long-range correlations and maintain
the system out of equilibrium. In order to study in detail
the structures resulting from these processes on the kpc
scale, we perform local simulations of self-gravitating disks
in 2D and 3D. The third dimension becomes important as
soon as a strong matter clumping causes a tight coupling
of self-gravitating forces in the 3D equations of motion.

2. Local Model

2.1. Principle

In local models of disks, everything inside a box of a given
size is simulated and more distant regions in the plane are
represented by replicas of the local box. In such a model
the orbital motion of the particles is determined by Hill’s
approximation of Newton’s equation of motion (Hill 1878).
In 3D they read
ẍ − 2Ω0 ẏ = 4Ω0A0x + Fx(x, y, z)
ÿ + 2Ω0 ẋ = Fy(x, y, z)
z̈ = −ν2z + Fz(x, y, z) ,

(1)

where A0 = − 1
2R0(dΩ/dR)R0 is the Oort constant of dif-

ferential rotation and ν is the vertical epicycle frequency.
Fx, Fy and Fz are local forces due to self-gravitating par-
ticles.
The local system is periodic in the y-direction and iso-

lated in the z-direction. If we use an affine coordinate sys-
tem whose pitch angle changes with time then the sys-
tem is also in the y-direction periodic (Huber & Pfenniger
1999, 2001). Thus we can calculate the forces with the
convolution method using the FFT algorithm. Thereby
the computation time is reduced to be proportional to
Nc log(Nc), where Nc is the number of cells, taken here as
proportional to the number of particles.

2.2. Weak Friction

To counteract the particle dynamical heating, TK pro-
posed to add an ad-hoc friction term playing the role of
the dissipative factors at work in the interstellar gas. Fol-
lowing TK we include linear friction terms as well. The
friction terms should be weak in order to keep a quasi-
Hamiltonian system. Indeed at the kpc scale the physics
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Figure 1. The evolution of the particle positions seen from above the galaxy plane. The structures result from a 3D simulation
with a “weak” dissipation.
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Figure 2. The evolution of the particle position, resulting from a simulation with a “middle” dissipation.

is still dominated by gravitational dynamics and its con-
crete behavior should be weakly dependent on the partic-
ular dissipative factors.

The linear friction terms −Cxẋ and −Cz ż added to
the radial resp. vertical forces (Fx, Fz) control the particle
motions via Equation 1. There is no azimuthal friction in

order to be consistent with a global angular momentum
conservation.

2.3. Initial Conditions

We are interested in the secular time behavior of the galaxy
disk. Thus we perform simulations for t = 10 galactic ro-
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Figure 3. The evolution of the particle position, resulting from a simulation with a “strong” dissipation.

tations. In the initial state at t = 0 the particles are dis-
tributed uniformly in the x-y-plane. In the z-direction the
particle distribution follows an isothermal law

ρ ∝ sech 2(z/z0) , (2)

where ρ is the density and z0 is the disk scale height. The
velocities at t = 0 are determined by the shear

ẋ = 0 , ẏ = −2A0x , ż = 0 (3)

and the Schwarzschild velocity ellipsoid

σx =
3.36GΣ0Q

κ

σy =
σxκ

2Ω0
(4)

σz =
√

πGΣ0z0 ,

where the Safronov-Toomre stability criterion is Q ≥ 1.

3. Results

We present here some preliminary results of an extended
study to this subject (Huber & Pfenniger 2001).

3.1. 3D shearing boxes

The structures resulting from shearing box simulations
depend a lot on the relative strength of the competing
gravitational and dissipation processes. Gravitational in-
stabilities lead to a conversion of directed kinetic energy
(shear-flow) into random thermal motion. In this way the
disk is heated up. If the dissipation is too weak then ini-
tially arised structures can not be maintained and smear
out quickly. If the dissipation is increased, a filamentary

structure can be maintained in a statistical equilibrium. If
we continue to increase the dissipation the filaments be-
come denser and denser and clumps in filaments may be
formed. If finally the dissipation dominates completely the
heating process hot clumps, collecting almost all the mat-
ter of the simulation zone are formed out of the filaments.
The change of the structure morphology for an increas-
ing dissipation is showed in Figures 1-3. For convenience
we call the dissipation strengths, leading to the presented
structures, “weak”, “middle”and “strong”. The relative
cooling times corresponding to these dissipation strengths
are: τcool,1 : τcool,2 : τcool,3 : τosc = 16 : 15 : 14 : 1, where
τosc is the period of the unforced epicyclic motion.
The simulations are carried out with 131040 parti-

cles, corresponding to a surface number density of n =
3640λ2

crit. The dynamical range is 1.8 dex. Only each forth
particle is shown.

3.2. Mass-Size Relation

In order to characterize the structures resulting from the
shearing box experiments, we determine the mass-size re-
lation. We choose a representative set of particles and
count for each particle the number of neighboring particles
N(R) inside a certain radius. If we repeat this for other
values of R we can find the structure dimension D(R) via

D(R) =
dln(N)
dln(R)

(R) , (5)

where R denotes the scale. The mass-size relation is then

N(R) ∝ M(R) ∝ RD(R) . (6)



442

If the structure dimension is independent of the scale,D =
Df , i.e., if D is constant or oscillates around a mean value,
then the mass-size relation is a power law,

M ∝ RDf . (7)

If furthermoreDf is non-integer, the structure is fractal. If
however the structure dimension depends on the scaleD =
D(R), the structure dimension may simply be regarded
as a statistical measure describing the clumpiness at the
corresponding scale.
In order to asses the general relevance of the under-

lying physical processes we check the structure for self-
similarity, i.e., we check if D = Df for a certain scale
range. However, one has to take into account that the
structures result form a finite simulation, modeling a fi-
nite physical system. Thus the system can not be fractal
beyond an upper and lower cutoff. An upper cutoff is given
by the scale at which the system become periodic. A lower
scale limit is due to the finite resolution of the simulation
mesh.
Figure 4 shows the structure dimension of the mass dis-

tribution presented in Figures 1-3. The longer term evolu-
tion of the structure may be superimposed by fluctuations
on time-scales of the order of ∼ 1/2 τrot, where τrot is the
time for a rotation around the galaxy center. In order to
eliminate these fluctuations we indicate in this paper mean
values of the structure dimensionD determined during the
last two rotations.
The structure dimensions are not constant over the

corresponding dynamical range and are thus not fractal.
However the structure dimension resulting from the sim-
ulation with the “middle” dissipation has a structure di-
mension 1.5 < D < 1.8 over the whole dynamical range
and remains smaller than 2 also on scales where the disk
thickness becomes important. Thus the correspondingmat-
ter distribution can approximately be described by a power-
law for the considered scale range. The structure dimen-
sion has a minimum at R = 0.25 λcrit. The increase of
the structure dimension at R >| 0.25 λcrit | may then be
due to the lower and upper cutoff. A larger dynamical
range may thus flatten the curve depicting the structure
dimension. This supposition is supported by low resolu-
tion simulations showing a steeper increase of D beyond
the minimum.

4. Conclusions

The structure resulting from the local simulations of self-
gravitating disks can be homogeneous, filamentary or
clumpy depending on the relative strength of the com-
peting gravitational and dissipation processes. As long as
the structure is mainly filamentary self-gravitation and
dissipation ensure a statistical equilibrium, i.e., persistent
patterns consisting of transient structures are formed. If
the dissipative processes begin to dominate the evolution,
the structures turn from filamentary to clumpy. During
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Figure 4. The structure dimension D of the mass distributions
showed in Figures 1-3 as a function of the scale R. The corre-
sponding simulations were carried out with a “weak”, a “mid-
dle” and a “strong” dissipation, respectively. The solid line de-
picts the initial mass distribution. On large scales this state
represents a 2D matter distribution, whereas on small scales it
tends to D = 3.

the subsequent evolution the clumps become hotter and
more massive. In general clumpy structures do not evolve
towards a statistical equilibrium. However 2D simulations
with a dynamical range of 2.5 dex show that it is also pos-
sible to establish persistent patterns formed by clumps.
A larger dynamical range produce in general a flat-

ter structure dimension curve. However the scale range of
the simulations is still too small to draw final conclusions
about self-similarity in open, self-gravitating systems.
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