

SPIRE Observing Strategies

Ivan Valtchanov Herschel Science Centre European Space Astronomy Centre (ESAC) ESA

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Outline

- SPIRE quick overview
- Observing with SPIRE
 - Astronomical Observation Templates (AOT)
 - Photometry: point source, small map, large map
 - Spectroscopy with Fourier-Transform Spectrometer (FTS)
 - Observing strategies

Herschel Focal Plane

HERSCHEL OBSERVATORY

SPIRE Photometer Overview

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre 4/58

HERSCHEL

SPIRE Spectrometer

SPIRE Spectrometer

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

SPIRE Spectrometer Overview

- Fourier-Transform Spectrometer
 - Interferometer in Mach-Zehnder configuration
 - Signal vs Optical Path Difference (OPD)
 - Inverse Fourier transform => spectrum vs wavenumber $(1/\lambda)$ The entire spectral coverage is observed in one go
 - Two bands:
 - Short (SSW): 194-324 μm (1545 925 GHz)
 - Long (SLW): 316-672 μm (949 446 GHz)
 - Spectral resolution:
 - Low: $\Delta \sigma = 1 \text{ cm}^{-1}$
 - Medium: $\Delta \sigma = 0.25 \text{ cm}^{-1}$
 - High: $\Delta \sigma = 0.04 \text{ cm}^{-1}$
 - Field of view: 2.6' diameter

Things to Remember

- Photometer and FTS in mid-IR/submm range:
 - 200-700 μm
- The two sub-instruments cannot operate simultaneously
- Five detector arrays (detector=bolometer)
 - PLW, PMW, PSW
 - SLW, SSW
- Operate at 300 mK with ³He sorption cooler, 48 hours hold time

=> recycling necessary

- Photometer field of view: 4x8 arcmin
- Spectrometer field of view: 2.6 arcmin diameter
- Field of view not filled by the detectors

SPIRE Observing Templates

HERSCHEL OBSERVATORY

HERSCHEI

10/58

Photometric observations

• Introducing *chopping*:

- (source+background) background
- Done with the Beam Steering Mirror (BSM) on \pm Y axis
- Chop frequency (2Hz)
- Chop throw depending on the observing mode
- Introducing jiggling
 - Moving the BSM to re-position the target in the instrument (Y,Z) plane
- Introducing nodding
 - Done with the Herschel spacecraft.

SPIRE Photometer Point Source Photometry

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre HERSCHEL OBSERVATORY

Pointing Error

Introducing the Absolute Pointing Error (APE) of the telescope.

Point Source Observations

ESAC,20-21 Sep 2007

Ivan Valtchanov, Herschel Science Centre

- 7-point map (+ repeat the central point)
- Angular step $\theta \sim 6''$
 - -1/3 of the beam at 250 μm
 - > twice the APE
- Total flux and position fitted
- Compared to single accurately pointed observation, S/N for same total integration time is only degraded by
 - ~ 20% at 250 µm
 - ~ 13% at 350 µm
 - ~ 6% at 500 µm

13/58

HERSCHEL

Point Source Observations How is it working?

Introducing the **ABBA** cycle

First nod position (Nod A)
At each 8 jiggle positions:

16 chop cycles at 2 Hz

Nod to second position (Nod B)

and repeat
At each 8 jiggle positions:

16 chop cycles at 2 Hz

Stay in Nod B and repeat
Nod to Nod A and repeat

Chop throw = Nod distance = $126'' (\pm 63'')$

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

HERSCHEL

15/58

Point Source Observations

Overall timing and performance

Number of repeats: 1 (number of ABBA cycles) On-source integration time: 256 s Instrument and observing overheads: 143 s Observatory overhead: 180 s Total observation time: 579 s

1-σ noise (250, 350, 500): (1.4, 1.6, 1.3) mJy

Note: already lower than the extragalactic confusion noise limits.

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Point Source Observations Some Points to Note

- The calculated sensitivity assumes the ideal case in which the source is on-axis
- A sparse (undersampled) map of a roughly 2 x 4 arcmin region around the source will also be generated by seven-point observations
- Data will be fitted to find the flux density and position of the source (pipeline)

Point Source Photometry Résumé

- For sources with intrinsic size less than the beam size
- 7-point jiggle and ABBA nod pattern with chopping
- Total duration ~10 min (including overheads)
- Sparse map around the source

HERSCHEL OBSERVATORY

18/58

SPIRE Photometer Small Map

- No full spatial sampling with SPIRE arrays
 - => fully filled jiggle pattern is necessary: 64 point jiggle
 - Only AB cycle:
 - 16 points per AB cycle, 4 chop cycles at 2 Hz 1-16: AB, 17-32: BA, 33-48: AB, 49-64: BA.
 - Chop throw = Nod distance = 4' $(\pm 2')$
 - Fully sampled field of view: 4'x4'
 - Guaranteed area is a circle with 4' diameter

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Array orientation on sky depends on date of observation

- Guaranteed area of 4 arcmin diameter circle
- Note:

for sources near the ecliptic the array orientation on the sky is fixed

HERSCHEL

Overall timing and performance

Number of repeats: **1** (number of AB cycles) On-source integration time: 256 s Instrument and observing overheads: 251 s Observatory overhead: 180 s Total observation time: 687 s

1-σ noise (250, 350, 500): (4.7, 6.3, 5.3) mJy

HERSCHEL

23/58

Small Map Observations

Overall timing and performance

Number of repeats: **2** (number of AB cycles) On-source integration time: 512 s Instrument and observing overheads: 443 s Observatory overhead: 180 s Total observation time: 1135 s

1-σ noise (250, 350, 500): (3.3, 4.5, 3.8) mJy already close to the confusion limits.

HERSCHEI

24/58

Small Map Observations Résumé

- Region of interest is of size \leq 4 arcmin diameter
- 64-point jiggle with AB nod pattern, +chopping
- 4x4 arcmin fully sampled map at the observation day
- Total duration for one repeat: 11.5 minutes

Chop avoidance

• For both Point Source Photometry or Small Map modes

- three pairs of chop avoidance angles can be set:
 - when the chopping falls on "bad" region" and may hamper the subtraction

Note: chopping direction (+/- Y axis) depends on the observational day.

Penalized by 10 min overhead: complicates the mission planning.

HERSCHEL OBSERVATORY

Chop avoidance

M82 example

esa 💶 🖬 Ivan Valtchanov, Herschel Science Centre

SPIRE Photometer Large Map

HERSCHEL OBSERVATORY

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Large Map 1/f noise

Only in scan map mode

- Correlated and uncorrelated 1/f noise.
- The correlated 1/f noise will be removed by the SPIRE pipeline.
- Appears like large scale structure in the map and will affect the point source detection.
- Uncorrelated 1/f noise can be dealt with by performing crosslinked observations.

Large Map Observations

Scan speed:

- Nominal (30"/s) and Fast (60"/s)
- when to go for Fast scanning?
 - large-scale features (PSF smearing)
 - 1/f is less significant
- Single scan direction: either Scan A or Scan B direction
- Cross-linked scans (default):
 Scan A + Scan B

HERSCHEL

Large Map Observations

- Default scan speed: 30"/s
- Maximum scan length and height (single scan only): 19.82 x 4 deg
- Maximum cross-scan area: 226'x226' (~4x4 deg)
- Scan legs follow great circles on the sky
- Scanning angle is fixed at optimum observing
- Cross-linked observations for reducing 1/f noise
- Sensitive to all spatial scales, up to the size of the map itself

Large Map some points to note

- 'On-source integration time' refers to the total time it takes to observe the map area (excluding overheads)
 - This quantity does not determine the sensitivity
 - Sensitivity is governed by the number of map repeats
 - Maps of any size have the same sensitivity
 - This leads to discrete sensitivity levels: $\Delta S \sim 1/N^{1/2}$
- For single scan rectangular maps:
 - more efficient if scan length is greater than the scan height.
 It does not matter for cross-linked scans.

HERSCHEI

37/58

Large Map overheads

- Telescope/spacecraft turn around and stabilisation of the pointing accuracy
 - acceleration/deceleration
- Regular (at least every 45 min) PCAL flashes
- The larger the map the more efficient the observation:
 Effective integration time vs overheads

Large Map performance*

Array	250 µm	350 μm	500 µm	20
Effective integration time per map repeat (s)	11	11.4	12.3	4CE
$\Delta S (5 \sigma)$ for one map repeat (mJy)	68	93	79	FI SP
Time to map 1 deg ² to 3 mJy rms (hrs, excluding overheads)	8.5	16	12	HUS 2
Number of map repeats needed to reach 3 mJy rms	20	38	27	HFI

*HSpot sensitivities for version 3.0.7, Sep 2007

esa

HERSCHEL

39/58

Large Map orientation

- Map orientation can be set: pair of angles East of North
- Currently no indication in HSpot: but see the SPIRE Observers' Manual
- Penalized by 10 min overhead

Large Map Résumé

- For areas greater than 4 arcmin diameter
- Scanning at constant speed over great circles at a specific angle
- Cross-linked scans to fight uncorrelated 1/f noise (max 4x4 deg)
- Sensitivity by map repeats

HERSCHEL OBSERVATORY

41/58

SPIRE Spectrometer

Spectrometer observing modes

Source size

Single point (1 FOV with diameter of 2')

Raster (many FOVs)

Spatial sampling

Sparse 2 beam spacing

Intermediate 1 beam spacing

Full ½ beam spacing (Nyquist) <u>Spectral resolution</u> (unapodised)

High 0.04 cm⁻¹ (1.2 GHz) Medium 0.25 cm⁻¹ (7.5 GHz) Low 1.0 cm⁻¹ (30 GHz) Low+High

(constant in frequency)

Spectrometer

→ SINGLE POINT: SPARSE

Always get data from whole array

43/58

SERVATORY

HERSCHEL SS

Spectrometer

 \rightarrow SINGLE POINT: SPARSE, INTERMEDIATE or FULL

esa ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Spectrometer

\rightarrow RASTER: INTERMEDIATE

3x3 deg SLW

4pt jiggle at each raster

esa ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre 45/58

3x3 deg SSW

Spectrometer

 \rightarrow RASTER:

- The raster map is made up from a combination of individual fields of view
- Raster direction is fixed to spacecraft axes not to sky coordinates → check visualisation on different days!
- Coverage is a parallelogram on the sky
- Split into separate observations to make more complicated shapes

• Raster is performed in spacecraft coordinates

• Therefore orientation on the sky changes depending on source position & visibility constraints

length

Raster starts here

47/58

ESAC, 20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Raster is performed in
 spacecraft coordinates

• Therefore orientation on the sky changes depending on source position & visibility constraints

48/58

ESAC, 9-21 Sep 2007 Ivan Vetchanov, Herschel Science Centre

Spectrometer Spectral resolution SMEC movement D Z HIGH MEDIUM LOW Zero **Optical Path Difference** Path Difference

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

Spectrometer point source spectrum LOW $\Delta \sigma = 1.0 \text{ cm}^{-1} (30 \text{ GHz}); R = 52 - 15$

Continuum measurements

36 (20+16) resolution elements across the whole range

HERSCHEI

51/58

Spectrometer point source spectrum

MEDIUM

HIGH

 $\Delta \sigma = 0.25 \text{ cm}^{-1}$ (7.5 GHz); R=200 - 60 $\Delta \sigma = 0.04 \text{ cm}^{-1}$ (1.2 GHz); R=1290 - 370

- Line spectroscopy
- Measurement of total integrated line fluxes (line widths 280 – 840 km/s in HIGH resolution mode)

ESAC,20-21 Sep 2007 ESAC,20-21 Sep 2007 Ivan Valtchanov, Herschel Science Centre

High and Medium example

53/58

High+Low resolution

Path Difference **Optical Path Difference**

Low resolution spectra are extracted from High resolution ones.

HERSCHEL

54/58

Spectrometer sensitivity

Note that all sensitivities are quoted for a point source on axis at 200 µm

Minimum times for each spectral resolution are (repetition=2)

LOW (30 GHz)	26 sec \rightarrow	0.27 Jy RMS
MEDIUM (7.5 GHz)	98 sec \rightarrow	$0.55 \text{ Jy RMS} \rightarrow 4.1 \text{ x } 10^{-17} \text{ W/m}^2$
HIGH (1.2 GHz)	266 sec →	0.27 [*] Jy RMS \rightarrow 2.5 x 10 ⁻¹⁷ W/m ²
HIGH+LOW	292 sec →	0.19 [*] Jy RMS \rightarrow 2.5 x 10 ⁻¹⁷ W/m ²

Using the low resolution part in High res observations.

HERSCHEL

55/58

Why use FTS?

- The line sensitivity is good for broad lines (200 km/s) at low wavelengths (~200 μm).
- The full spectral range from 194 to 672 μ m in one go.
- Always get a sparse map around the source.
- No wavelength calibration necessary.

Concluding remarks

- Offsets:
 - for each bolometer at the beginning of an observation
 - cannot be changed during an observation
 - can lead to "saturation" for bright sources or strongly varying background
- The photometer is the primary instrument
- Be careful when setting constrained observation
 - check visibility
 - check observing efficiency
- Use concatenation/grouping whenever appropriate

ALE ISERVAT HERSCHEL

HERSCHEL

57/58

Where to go from here

Herschel Science Centre Web Pages: – http://herschel.esac.esa.int

Herschel Manuals + many other useful information and links.

Register to Herschel and use the help-desk

The End

ESAC,20-21 Sep 2007 Science Centre HERSCHEL OBSERVATORY