





Robert Laing European Instrument Scientist Herschel Open Time Key Programme Workshop Noordwijk, February 21, 2007







#### What is ALMA?

#### Main performance numbers

- Sensitivity
- Resolution
- Spatial scales
- Spectral-line modes

#### Synergy between ALMA and Herschel

- Science
- Wavelengths, resolutions, surveys and follow-up
- Examples
- Calibration

Robert Laing European Instrument Scientist ALMA



# What is ALMA?



Atacama Large Millimetre/Submillimetre Array

- Aperture synthesis array optimised for millimetre and sub-millimetre wavelengths.
- High, dry site, Chajnantor Plateau, Chile
- North America (NRAO) + Europe (ESO) + Japan (NAOJ) + Chile
- EU/NA: 50 dishes with 12m diameter. Baselines from ~15m to 14km.
- ALMA Compact Array (ACA) provided by Japan
  - 12 7m dishes in compact configurations
  - 4 12m dishes primarily for total-power

Robert Laing European Instrument Scientist



# What is ALMA (2)?

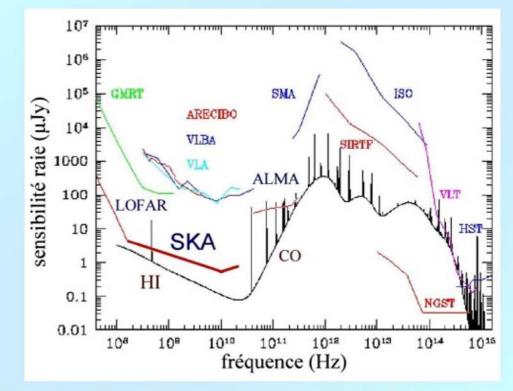


- Low-noise, wide-band receivers.
- Digital correlator giving wide range of spectral resolutions.
- Software (dynamic scheduling, imaging, pipelines)
- Will eventually provide sensitive, precision imaging between 30 and 950 GHz in 10 bands
  - 350 GHz continuum sensitivity: about 1 mJy in one second
  - Angular resolution will reach ~0.05 arcsec at 100 GHz
- Resolution / arcsec  $\approx 0.2 (\lambda/mm) / (D/km)$
- Primary beam / arcsec  $\approx 17 (\lambda/mm)$



# **Highest-level science goals**




- Image spectral line emission from CO or C+ in a galaxy with similar mass to the Milky Way at a redshift of z = 3, in less than 24 hours of observation.
- Image the gas kinematics in a solar-mass protostellar/ protoplanetary disk at a distance of 150 pc. Study the physical, chemical, and magnetic field structure of the disk and detect the tidal gaps created by planets undergoing formation.
- Provide precise images at a resolution of 0.1 arcsec.

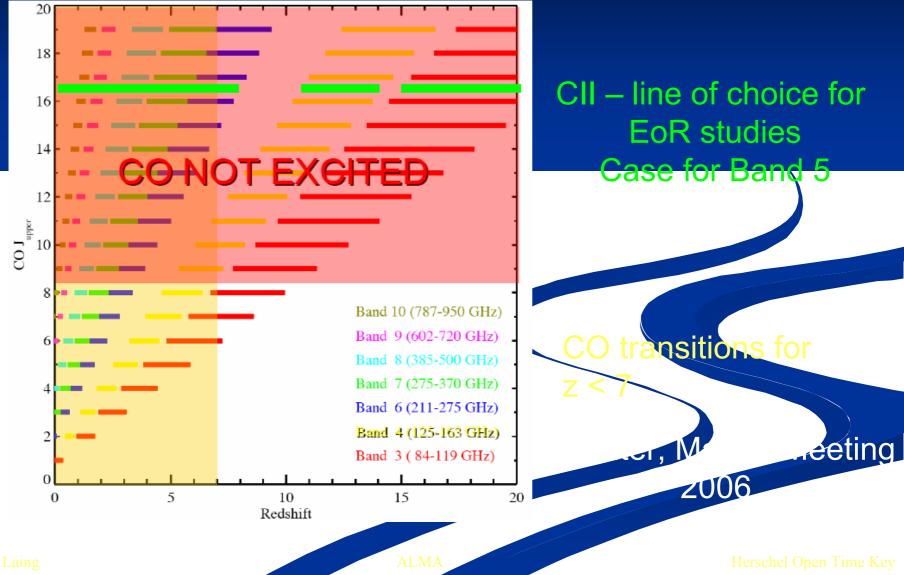


# **Spectrum of a normal galaxy**



Z=2 in this example  $L(CO)_{1-0} \sim 5x10^{8}$   $Kkms^{-1}pc^{2}$   $\sim L(CO)_{2-1}$  $S_{CO_{2-1}} \sim 0.1mJy$ 




Detection of spectral lines of a 'standard' spiral galaxy at z = 2

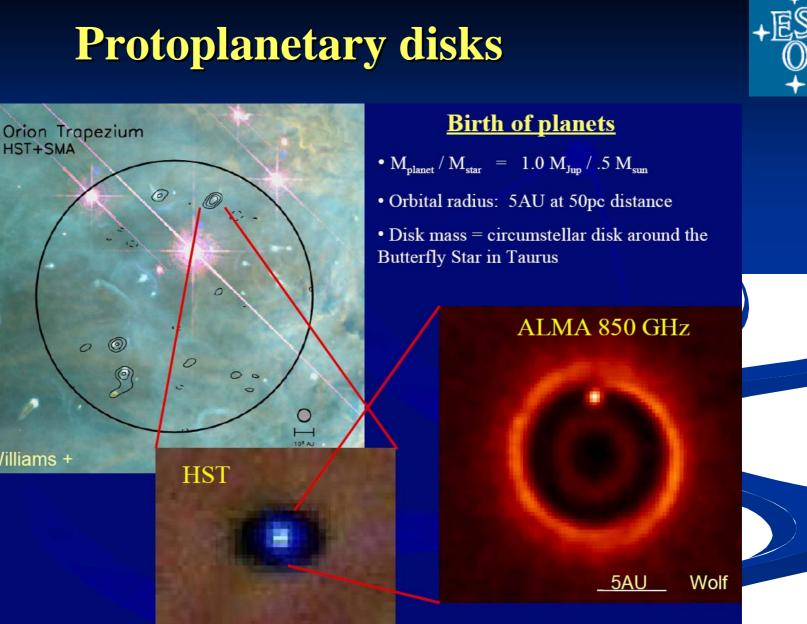
 $5\sigma$  in 1 hour





#### **ALMA** as a redshift machine



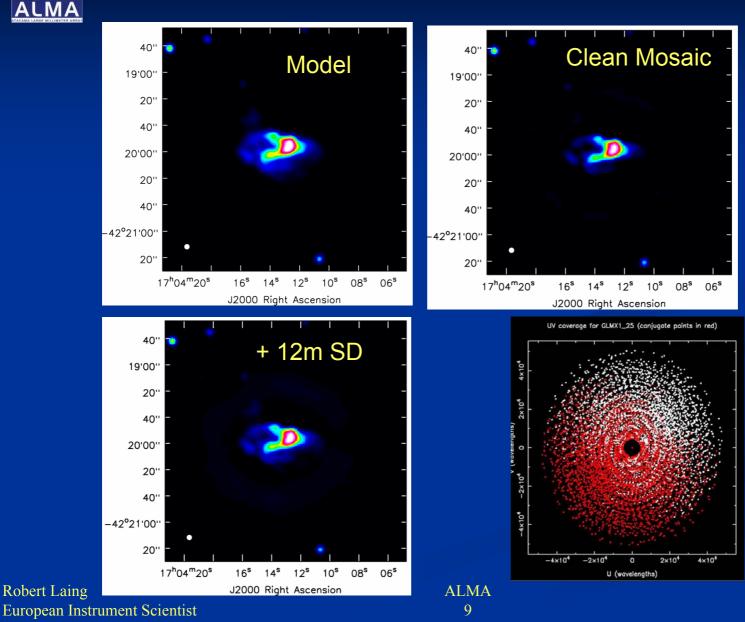



HST+SMA

Williams +

0

# **Protoplanetary disks**




**Robert** Laing

Herschel Open Time Key







#### uv coverage (3 mins)



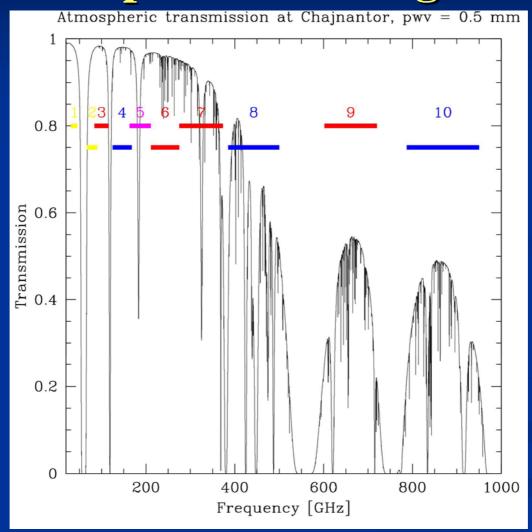
# Mosaics and wide-field imaging



- Basic problem of extremely small fields, limited by primary beam and short spacing coverage
- Combination of a mosaic of pointings with the main array and single-dish data can be used to sample a larger range of spatial scales.
- Pointing errors severely limit the image fidelity unless scales around 10m uv distance are properly sampled.
- ACA 7m antennas fill in short-spacing coverage
- Four 12m antennas used to supply total power data (beam- switching using nutator + on-the-fly mapping)



# **Key performance numbers**




- Baseline range 15m 14.5 km + ACA + single dish
- Resolution/ arcsec ≈ 0.2(λ/mm)/(max baseline/km)
  0.04 arcsec at 100 GHz, 14.5 km baseline
  - 0.005 arcsec at 900 GHz, 14.5 km baseline
- Wide bandwidth (8 GHz/polarization), low noise temperatures, good site and antennas, ... → excellent continuum sensitivity
- Full polarization



# Transparent site allows full spectral coverage





Herschel Open Time Key Programme Workshop

#### Robert Laing European Instrument Scientist

ALMA 12



# Sensitivity in 1 minute



|           |            |                | ſ |
|-----------|------------|----------------|---|
| ν         | $\Delta S$ | $\Delta T_{B}$ | k |
| GHz       | mJy        | Κ              | t |
| 35        | 0.019      | 0.0003         | ( |
| 110       | 0.033      | 0.0004         | N |
| 345       | 0.14       | 0.0018         |   |
| 409       | 0.31       | 0.0040         | ļ |
| 675       | 3.8        | 0.049          | Ċ |
|           |            |                |   |
| 850       | 5.9        | 0.080          |   |
|           |            |                |   |
| 1 4 4 1 1 |            |                | - |

RMS for 2 polarizations, each with 8GHz bandwidth; elevation of 50°. Brightness temperatures are for a maximum baseline of 200m; 50 antennas

Median PWV = 1.5mm Best 5% PWV = 0.35mm ALMA Memo 276

Some receivers will exceed specification

Sensitivity calculator available at

#### http://www.eso.org/projects/alma/science/bin/sensitivity.html

Robert Laing European Instrument Scientist ALMA 13

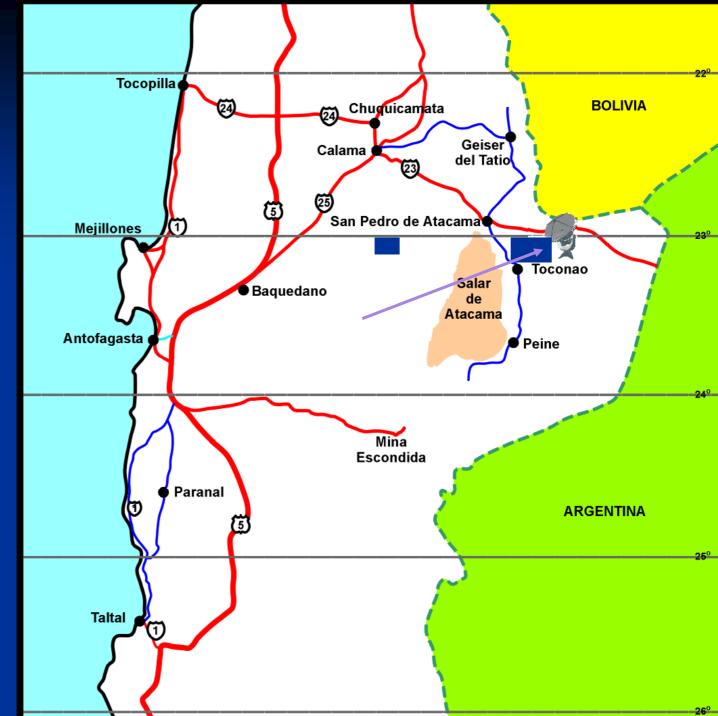


# Sampling of large spatial scales



#### I Mpc corresponds to -125 arcsec at z = 1

| ν                                                | Primary beam $\lambda/D$ Minimum $\lambda/D$ |     |         |        | Resolution |  |  |
|--------------------------------------------------|----------------------------------------------|-----|---------|--------|------------|--|--|
| GHz                                              | arcsec                                       |     | arcse   | arcsec |            |  |  |
|                                                  | 12m                                          | 7m  | Compact | ACA    | Compact    |  |  |
| 35                                               | 170                                          | 291 | 116     | 199    | 10         |  |  |
| 110                                              | 56                                           | 99  | 37      | 64     | 3.1        |  |  |
| 230                                              | 27                                           | 46  | 18      | 31     | 1.5        |  |  |
| 345                                              | 18                                           | 31  | 12      | 21     | 1.0        |  |  |
| Also combine with 12m (single-dish) observations |                                              |     |         |        |            |  |  |


Robert Laing European Instrument Scientist ALMA 14



Location

Chajntantor Plateau at 5000m in northern Chile

Robert Laing European Instrument Scientist



#### The Chajnantor plateau



# Work in progress





#### AOS Technical Building



Robert Laing European Instrument Scientist ALMA 17 A small problem Herschel Open Time Key Programme Workshop



# **Key antenna specifications**

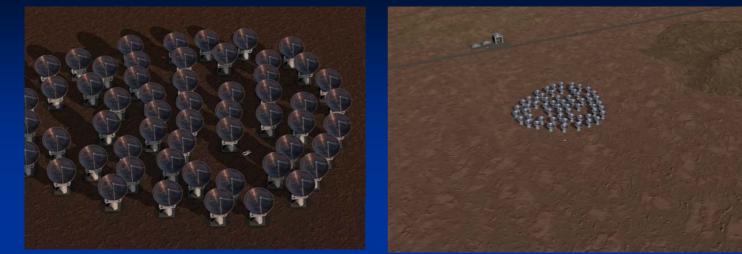


- 12m diameter
- 25 μm rms surface accuracy (goal 20 μm); measure using tower and interferometric holography
- 2 arcsec rms absolute pointing; 0.6 arcsec rms offset
- Tracking speed for on-the-fly mapping 1 deg/s
- Fast switching required between target and calibrator (1.5° in 1.5s)
- Three prototypes (Vertex/RSI, EIE/Alcatel, Mitsubishi) tested at VLA site; all meet specification as far as can be tested at lower altitude.



### The three prototype antennas at the ATF






#### **12 Meter Diameter, Carbon Fiber Support Structures**

Robert Laing European Instrument Scientist ALMA 19







#### Continuous reconfiguration from compact to extended configuration



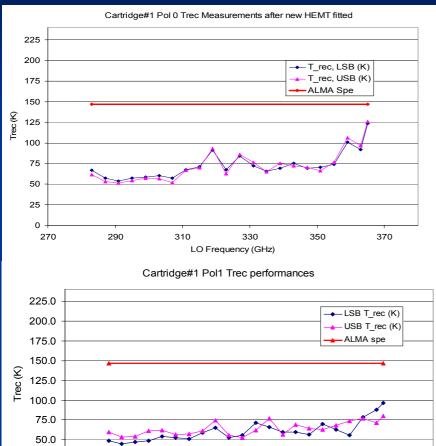


Robert Laing European Instrument Scientist ALMA 20



### **ALMA Bands**




- 1 31.3 45 GHz
- 2 67 90 GHz
- 3 84 116 GHz NRAO
- 4 125 163 GHz
- 5 163 211 GHz
- 6 211 275 GHz HIA
- 7 275 373 GHz IRAM
- 8 385 500 GHz
- 9 602 702 GHz SRON
- 10 787 950 GHz

Under construction (NA/Europe) Under construction (Japan) Development study (Japan) EU FP6 (6 antennas) Not yet funded

Robert Laing European Instrument Scientist ALMA 21



### Band 7 noise performance




330

LO Frequency (GHz)

350





Robert Laing European Instrument Scientist

290

310

25.0 0.0

270

ALMA 22

370



### **Spectral modes**



- Channel bandwidth 31.25 MHz 2 GHz (4 channels)
- Maximum 4096 x (4/N) x (2/P) spectral points/channel, where N = 1, 2 or 4 is the number of channels and P=2 for full polarization; 1 for parallel hands only.
- Maximum spectral resolution 3.8 kHz.
- Tunable FIR filter bank to subdivide bandwidth into 32 (possibly overlapping) sub-channels
- Flexible combinations of centre frequency and resolution



# **Project Status**



- "Rebaselining" complete cost and schedule major reviews Oct 2005 – Jan 2006. Descope to 50 antennas.
- Prototype systems integration (ATF). First fringes between prototype antennas March 2007
- First production antenna delivered 2007Q3
- First interferometry at AOS 2009
- Commissioning and science verification 2009-10
- "Early Science" (open call) 2010
- Full operations 2012







- At least 16 antennas fully commissioned (more in process of integration)
- Receiver bands 3, 4, 6, 7, 8, 9
- Interferometry in single field or pointed mosaic mode
- Significant range of spectral modes, including Tunable filter bank
- Circular and linear polarization (not mosaic)
- Single-dish mosaic (position and beam-switch) and OTF.
- 2 subarrays operational
- Formal proposal call

Robert Laing European Instrument Scientist ALMA 25



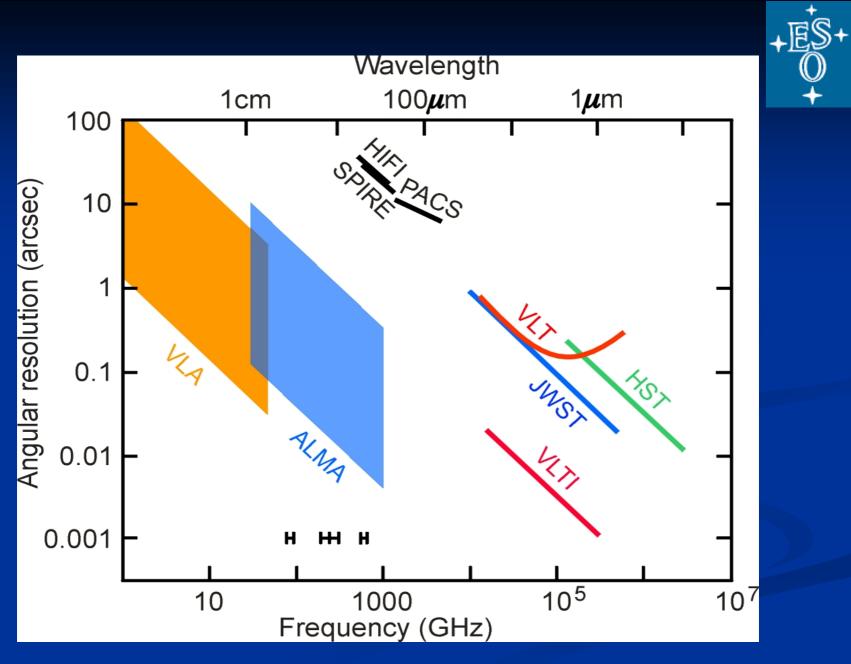
# **Science Verification**



- Happens before Early Science
- Main goals
  - Test ALMA modes end-to-end (includes projects from user community)
  - Feedback to commissioning team
  - Early access to ALMA data for the community
- Modes fully commissioned
- Open call for proposals, fast, not using formal machinery; review for scientific value (+external) and feasibility
- Data public immediately
- Projects executed by commissioning team/Operations
- ALMA Public Images pretty pictures

Robert Laing European Instrument Scientist




# **The Herschel-ALMA Synergies**



#### ESA-ESO Working Group 2

- Chair Tom Wilson/co-chair David Elbaz
- Report August 2006
- Science areas
- ESO and ESA
  - Expected science return
  - Competition and complementarity
  - Open areas
  - Case for coordination





Robert Laing European Instrument Scientist ALMA 28



# Complementarity



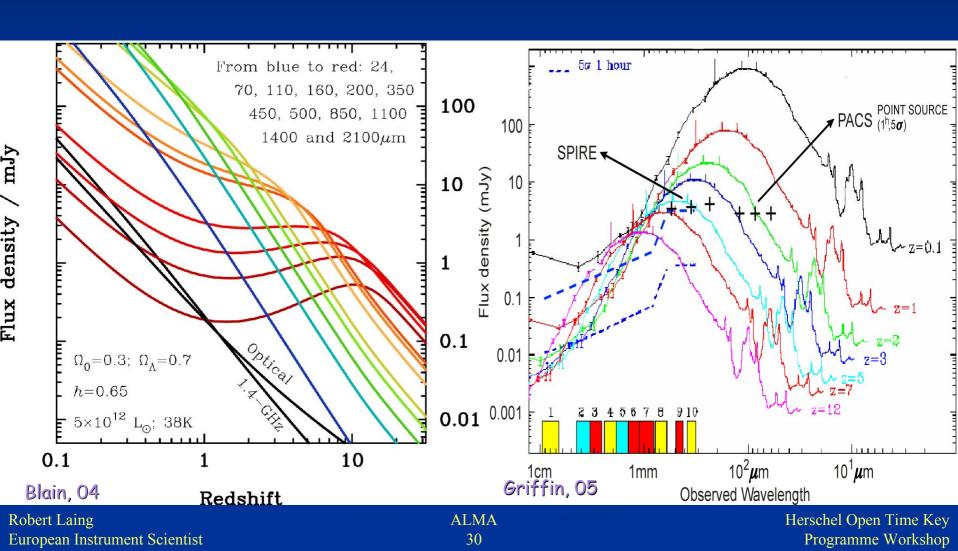
#### Wavelength coverage

- ALMA 320  $\mu$ m 1 cm; atmospheric transmission bands
- Herschel  $60 625 \mu m$ ; not limited by atmosphere

#### Resolution and field of view

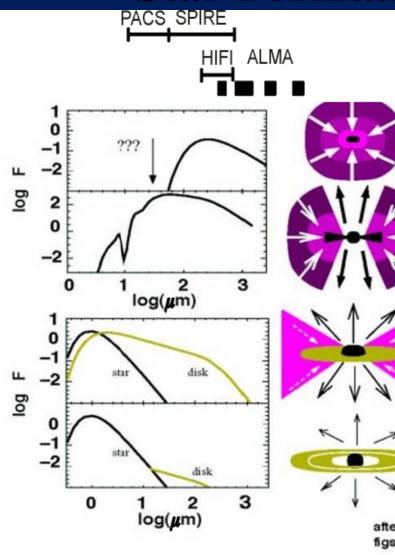
- ALMA has high spatial resolution; limited instantaneous field
- Herschel has limited spatial resolution; bolometer arrays can cover a wide area fairly quickly

#### Spectral coverage and resolution


- ALMA flexible, subject to trade-off between bandwidth and resolution set by correlator capacity
- PACS, SPIRE (FTS), HIFI also give a wide range of resolutions.

Robert Laing European Instrument Scientist




#### **Starburst Galaxies**







#### **Star Formation**



CLASS 0 (main accretion phase) Size: 10000 AU; t=0

CLASS I (late accretion phase) Size 8000 AU; t=10<sup>4</sup>-10<sup>5</sup> yr.

CLASS II (optically thick disks) Size 200 AU;  $t=10^5-10^6$  yr.

CLASS III (debris disks ?) Size 200 AU; t=10<sup>6</sup>-10<sup>7</sup> yr.

after Ch. Lada, figs: M. Hogerheijde

> Herschel Open Time Ke Programme Worksho

Robert Laing European Instrument Scientist ALMA











#### Herschel

- Fairly large fields
- Low spatial resolution → vulnerable to confusion
- Efficient finding surveys
- All-sky

#### ALMA

- Limited sky coverage
- High spatial resolution  $\rightarrow$  not vulnerable to confusion
- Instantaneous field limited by primary beam, but fast mosaics are possible
- Deep, narrow-field surveys (continuum/line)
- Follow-up of wide-field surveys.

Robert Laing European Instrument Scientist ALMA 32



# **Example surveys with ALMA**

Broadband continuum survey; 4 x 4 arcmin<sup>2</sup> at 290 GHz); 130 pointings; 30 min each; rms 20µJy, 100 – 300 sources

Continuum, 4 x 4 arcmin<sup>2</sup> at 90 GHz, 16 pointings; 4 hr each; rms 1.5 µJy

- Line, 50 kms<sup>-1</sup> spectral resolution, 4 centre frequencies, 4 mJy km s<sup>-1</sup> for 300 km s<sup>-1</sup> line, 1 CO line for z > 2, 2 for z > 6
- Then repeat at 200 GHz (6 days)

Robert Laing European Instrument Scientist ALMA



# **Observing Water**



#### Herschel

- Water is an important and abundant molecule in star-forming regions – a unique probe of physics and chemistry.
- Unique application of Herschel (especially HIFI)

#### ALMA

- Water is a problem absorption and tropospheric phase fluctuations. Water-vapour radiometry at 183 GHz
- Site is good enough that observations in Band 5 (163 -211 GHz) should be possible in best 20% of conditions
- Six single-polarization Band 5 receivers delivered end 2009/2010
- High spatial resolution follow-up of Herschel detections

Robert Laing European Instrument Scientist



### Calibration



#### ALMA requirements

- There are few stable, small primary amplitude calibrators at high frequencies
- Need to identify primary and secondary calibrators for ALMA bright, well modelled on relevant spatial scales
- Outer planets, asteroids, moons of giant planets

#### Herschel

- Preparatory work in modelling directly relevant to ALMA
- Flux density measurements



# Complementarity, not Competition





Driginal CG cautespot ESC modified by NAOL

Robert Laing European Instrument Scientist ALMA 36