SPIRE Fourier Transform Spectrometer Observing Modes

Edward Polehampton

Rutherford Appleton Laboratory, UK
University of Lethbridge, Canada
The SPIRE Imaging FTS

- Fourier Transform Spectrometer → entire spectral coverage is observed in one go
- 2 Bolometer detector arrays for short and long wavelength bands

2.6’ unvignetted beam footprint

194 – 324 µm
(1545 – 925 GHz)

316 – 672 µm
(949 – 446 GHz)

Pixel spacing ~ 2 beam widths

SSW
SLW

Beam FWHM ~ 16”
Beam FWHM ~ 34”
Spectral Coverage

SPIRE

HIFI

PACS

SLW

SSW

194 – 672 µm

(1545 – 446 GHz)

(51.5 – 14.9 cm⁻¹)

Good overlap with PACS (194 – 210 µm)
Observing Choices

Source size
- Single point (1 FOV with diameter of 2’)
- Raster (many FOVs)

Spatial sampling
- Sparse
 - 2 beam spacing
- Intermediate
 - 1 beam spacing
- Full
 - ½ beam spacing (Nyquist)

Spectral resolution (unapodised)
- High 0.04 cm\(^{-1}\) (1.2 GHz)
- Medium 0.25 cm\(^{-1}\) (7.5 GHz)
- Low 1.0 cm\(^{-1}\) (30 GHz)

(constant in frequency)
Point Source Spectrum

→ SINGLE POINT: SPARSE

- Always get data from whole array
- HSpot shows location of array pixels for sparse mode
Point Source Spectrum 2

- Instrumental profile is a Sinc function

\[
\text{with a FWHM} \quad 1.2 \times \text{resolution}
\]

\[
\text{FWHM} = 0.048 \text{ cm}^{-1} = 1.4 \text{ GHz}
\]

- Apodisation reduces ringing in the side lobes

...but increases the line width by 20-30%
Point Source Spectrum 3

LOW $\Delta \sigma = 1.0 \text{ cm}^{-1}$ (30 GHz); \hspace{1cm} R = 52 – 15

- Continuum measurements
- 36 resolution elements across the whole range
 (sampled at $\frac{1}{4}$ res. element)
Point Source Spectrum 4

INTERMEDIATE \(\Delta \sigma = 0.25 \text{ cm}^{-1} \) (7.5 GHz); \(R=200 – 60 \)

HIGH \(\Delta \sigma = 0.04 \text{ cm}^{-1} \) (1.2 GHz); \(R=1290 – 370 \)

- Line spectroscopy
- Measurement of total integrated line fluxes
 (line widths 280 – 840 km/s in HIGH resolution mode)

HIGH + LOW

- Line spectroscopy with high S/N continuum measurement
 (number of HIGH and LOW resolution scans are set independently)
Spectral resolution in HIGH & INTERMEDIATE modes

- **200 µm**
 - INTERMEDIATE res x 50
 - HIGH res x 10
 - 20 km/s line

- **609 µm**
 - INTERMEDIATE res x 150
 - HIGH res x 30

- **200 µm**
 - (1499 GHz)
 - 280 km/s (HIGH)
 - 1810 km/s (INT)

- **609 µm**
 - (492 GHz)
 - 850 km/s (HIGH)
 - 5510 km/s (INT)
Extended Source

→ SINGLE POINT: SPARSE, INTERMEDIATE or FULL

SPARSE
2 beam spacing
SSW: 33"
SLW: 51"

FULL
½ beam spacing
SSW: 8"
SLW: 12"

INTERMEDIATE
1 beam spacing
SSW: 16"
SLW: 25”
Extended Source 2: Raster Map

→ RASTER: SPARSE, INTERMEDIATE or FULL

- Raster map is made up from a combination of individual fields of view
- Raster direction is fixed to spacecraft axes not to sky coordinates → check visualisation!
- Coverage is a parallelogram on sky
- Split into separate observations to make more complicated shapes
Raster is performed in spacecraft coordinates.

Therefore orientation on the sky changes depending on source position & visibility constraints.
• Raster is performed in spacecraft coordinates
• Therefore orientation on the sky changes depending on source position & visibility constraints
Sensitivity

- Mechanism makes scans in pairs (forward & reverse)
- Integration time depends on repeats of scan pairs (at least 2 repeats so glitches can be removed)
- Average point source sensitivity (Low Res):
 \[\sim 1.2 \text{ Jy (1}\sigma\text{ in 1 sec)} \quad \ldots \quad \sim 100 \text{ mJy } 5\sigma \text{ in 1 hour} \]

For variation of sensitivity with wavelength, see the SPIRE Observer’s Manual

Note that all sensitivities are quoted for a point source on axis

Minimum times for each spectral resolution are:

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Time</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW (30 GHz)</td>
<td>26 sec</td>
<td>0.24 Jy RMS</td>
</tr>
<tr>
<td>MEDIUM (7.5 GHz)</td>
<td>98 sec</td>
<td>0.5 Jy RMS → 3.6 \times 10^{-17} \text{ W/m}^2</td>
</tr>
<tr>
<td>HIGH (1.2 GHz)</td>
<td>269 sec</td>
<td>1.8 Jy RMS → 2.2 \times 10^{-17} \text{ W/m}^2</td>
</tr>
</tbody>
</table>
Why use SPIRE for line spectroscopy?

- In HIGH resolution mode (min length 269 sec), \(RMS \) in line flux is \(2.2 \times 10^{-17} \text{ W/m}^2 \)
- What does this integrated flux mean in terms of temperature units?
 - *Depends on intrinsic line width*

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>535 µm</th>
<th>200 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>560 GHz</td>
<td>1499 GHz</td>
</tr>
<tr>
<td>(T_{\text{rms}}) (20 km/s line)</td>
<td>0.13 K</td>
<td>0.03 K</td>
</tr>
<tr>
<td>(T_{\text{rms}}) (5 km/s line)</td>
<td>0.51 K</td>
<td>0.14 K</td>
</tr>
</tbody>
</table>

CONCLUSION

SPIRE is useful for *integrated flux* measurements of *BROAD lines*, particularly at high frequencies.

Additional advantages:
- always observes full spectral range simultaneously
- always get a sparse map of the source
HSpot

Source size
1 FOV
Raster

Spatial sampling
2 beam
1 beam
½ beam

Spectral resolution
High
Medium
Low

Number of repeated Spectrometer mechanism scan pairs (minimum 2)

ie. this sets the integration time per point
More Details

Refer to the AO for more details, including HSpot examples:

http://herschel.esac.esa.int/Docs/SPIRE/html/spire_om.html

Specifically:

• **Chapter 2**, Section 2.3 ("Spectrometer")
• **Chapter 3**, Section 3.1 ("Sensitivity")
• **Chapter 4**, Section 4.2 ("Spectrometer AOT Modes")
• **Chapter 6**, Section 6.4
 ("HSpot Components for Setting up a SPIRE Spectrometer Observation")