Heterodyne Instrument for the Far Infrared (HIFI)

Netherlands Organisation for Scientific Research

HIFI Science Targets in a nutshell: Life Cycle of Galaxies

ISM in the Milky Way
Physical conditions
Chemistry
Energetics
Dynamics
Isotopic gradients

Stellar evolutionMass lossComposition

Star formation

ISM in Galaxies

Star formation

• Physical conditions

- Physical conditions
- Chemistry
- Energetics
- Dynamics
- Role of Water

Solar System

- Water in Giant Planet
- Chemistry Martian atmosphere

Herschel-HIFI Consortium

POLISH ACADEMY OF SCIENCES

SPACE

RESEARCH

CENTRE

The Netherlands: SRON -Groningen Utrecht Jniversity of Delft	USA: Caltech and JPL, Pasadena Univ. of Amherst	
France: CESR Toulouse .RM-DEMIRM with IRAM Observatoire de Bordeaux	Germany: KOSMA, I. Phys Institut, Köln Max Planck Inst. , Lindau Max Planck Inst. für Radioastronomie Bonn	
taly: CAISMI-CNR, Florence IFSI, Rome	Poland: Space Research Center Copernicus Astr. Institute.	
Spain: Centro Astron. deYebes/OAN CSIC, Madrid	Sweden: Onsala and GARD, Chalmers TH, Göteborg	
Switzerland: ETH, Zürich	Canada: CSA and Waterloo Univ.	
reland: Maynooth College NUI	With contributions from: Taiwan (IF-2 amp. design) Russia (HEB NbN layers)	

CENTRO NACIONAL DE INFORMACIÓN GEOGRAFICA

BSERVATOIRE

DE BORDEAUX

Heterodyne Technical Principle and Modular Approach in HIFI

HIFI Instrument Requirements Resulting Concept

0

Design Requirements

HIFI designed for:

- Spectral Scans and Spectral line surveys
- Very high spectral resolution
- Widest possible coverage in the unexplored FIR/Submm range

1. Frequency coverage:

480 – 1250 GHz (625-240 μm) 1410 – 1910 GHz (212-157 μm)

2. Sensitivity

Near-quantum noise limit sensitivity

- IF bandwidth/Resolution:
 - 4 GHz (in 2 polarisations)
 - 140 280 kHz –0.5 and 1 MHz
- 3. Calibration Accuracy: 10% baseline; 3% goal

Implementation

- Heterodyne spectroscopy
 - single pixel on the sky
 - very high spectral resolution

7 dual-pol mixer bands

- 480-1250 GHz (625-240 mm) 5x2
 SIS mixers, IF 4-8 GHz
- 1410-1910 GHz(212-157 mm; 2x2 HEB mixers, IF 2.4-4.8 GHz

14 LO sub-bands

- LO source unit in common
- LO multiplier chains

2 spectrometer systems;

- for each polarisation
 - auto-correlator spectrometer
 - acousto-optical spectrometer

Single pixel on the sky Angular Resolution (with Herschel): 12"- 40"

HIFI Block Diagram

HIFI FM with all flight units delivered ILT is progressing

Herschel OT KP Workshop 2007

HIFI FPU FM with mixer bands1,2,3,5and complete

HIFI Signal Chain: Mixers and Amplifiers

N.B. There is an identical arrangement for the other polarisation.

IN HIFI: ONE FREQUENCY Band is working at a time with 2 mixers;

- In orthogonal polarisation, also for redundancy.
- One LO band, with 2 sub-bands, match the corresponding mixer band

Band-3 SIS Noise Temperature as function of IF

Band-6 HEB Noise Temperature as function of IF

HIFI Flight Mixer Performance at Mixer Unit level (open symbols) and after integration in the FPU

HIFI Local Oscillator Subsystem

<= LOU with 7 LO assemblies LO assembly each

Herschel OT KP Workshop 2007

SRON

WBO FM (one Polarisation) with 1.1 MHz resolution and 4GHz bandwidth

CCD

Source Bragg- Imaging Cyl. module cell optics lens

HIFI-HRS (auto-correlator) FM Capabilities

Requirements			FM capabilities			
Mode	high	Normal	Low	Wide		
	Resolution	Resolution	Resolution	Bana		
Number of	1	2	4	8		
Bands	1	2	4	8		
العام والمناز والعالم	250	250	250	500		
Banawiath	235	235	235	470		
FWHM	0.14	0.27	0.54	1.1		
(MHz)	0.125	0.25	0.5	1.0		

Efficiency : better than 80% over the whole band

Linearity with software correction : better than 1%

2 HRS FM modules

HIFI FM Test set-up

Ξ

cell

648

HIFI FM ILT spectra

HIFI Observing Modes and AOT summary

- Dual Beam Switch with internal copper and telescope nod
- Position Switch efficiency depending on off-position slew
- Frequency Switch with switching LSU
- Optimum AOT depending on stability Telescope-Instrument System

HIFI Data Products and Processing Levels (ground-based heritage)

Figure 3 Typical level 0 raw data for single dish sub-millimetre signal and reference source scans.

Level 0

Figure 4 Typical narrow band single dish sub-millimetre level 1 calibrated scans.

Level1

HIFI EXPECTED SENSITVITY ESTMATED JANUARY 2007 (+ large effects from overheads)

	Mixer Band								
	1	2	3	4	5	6	7		
Frequency range	480- 640	640- 800	800- 960	960- 1120	1120- 1250	1410- 1660	1660- 1920		
Receiver Noise (SSB) (K)	180	400	480	900	2000	3000	3200		
Flux limit (1ơ, 1hr, 1km/s) (mK)	5.8	11	13	22	46	60	60		
Flux limit (1ơ, 1hr, 1km/s) (Jy)	2.6	5.2	5.7	9.9	21	36	36		
Flux limit (1σ, 1hr, 1km/s) (10 ⁻ ¹⁸ Wm ⁻²⁾	0.06	0.14	0.18	0.36	0.87	2.0	2.2		
Line scan (50 GHz in 10 hr, 1σ) (mK)	8	14	25	35	100	150	150		

Life Cycle of Galaxies

HIFI UNIQUE SCIENCE I: WATER

Water plays a key role in the chemistry and energy balance of a wide variety of regions

HIFI is designed to measure ~40 lines of H_2O and isotopes plus H_3O^+ , OH and O_2 lines

Key questions:

- What is the distribution of water ?
- How does this evolve ?
- How does this affect the evolution of interstellar and circumstellar media ?

OMC-1

HIFI UNIQUE SCIENCE II: SPECTRAL SURVEYS

HIFI will make unbiased spectral scans of many different regions discovering a host of new species and determine reliable abundances !

- What is the molecular inventory of space ?
- What processes dominate interstellar chemistry ?
- How complex can the molecular universe be ?
- What is the role of interstellar molecules in the inventory of newly formed planetary systems ?
- What is the role of interstellar molecules in the origin of life ?
- What role do these molecules play in the physical evolution of these regions ?

Spectral Survey of Orion in the ground-based windows

HIFI UNIQUE SCIENCE III: Interstellar medium of galaxies

HIFI will measure the key atomic fine-structure lines of CI and CII and molecular rotational lines of hydrides

Key questions:

- How does interstellar gas couple energetically to stellar photons ?
- How does material cycle between the diffuse and molecular phases of the ISM ?
- How does interstellar chemistry get started ?

BICE map of the CII emission of the inner galaxy

Water in star forming regions: WISH **Ewine van Dishoeck** ٠ Spectral surveys of star forming regions HS3F Cecilia Ceccarelli Herschel Observations of Extra0ordinary Sources (Orion/Sgr B2) HEXOS Ted Bergin Molecular Carriers in the ISM: MOLIS **Maryvonne Gerin** • H2O and Co2 obs. Of AGB, PPNe and PNe:HIFISTARSA Valentin Bujarabal Warm and dense ISM: WADI Volker Ossenkopf Physical and Chemical Conditions of ISM in Gal. Nuclei HEXGAL Rolf Guesten Water and Chemistry in the Solar System **Paul Hartogh** For details see posters Status: Just finished a HIFI referee program

SOLAR SYSTEM

Water is key in the formation and evolution of solar system bodies

- Separates the giant planets from the terrestrial planets and the dwarfs-planets
- Dominant compound
- Driving the evolution of terrestrial atmospheres
- **Proposed observations:**
- The Martian water cycle and atmospheric chemistry
- Origin of water in the upper atmospheres of the outer planets and Titan
- Comets:
 - Water excitation and coma thermodynamics
 - The D/H ratio
 - Cometary dust

WISH: WATER IN STAR FORMING REGIONS

Water plays a key role in regions of star formation

- Central to the chemistry
- Freeze out and evaporation/sputtering
- Regulates the energy balance
- Provides a key diagnostic for the physical conditions

Observations:

- Wide range of water lines
- Broad sample with a range of YSO mass/luminosity and a range of evolutionary stages

HS3F: HIFI SPECTRAL SURVEY OF STAR FORMING REGIONS

Understand the molecular inventory and chemical evolution of regions of star and planet formation

Observations:

Unbiased spectral surveys of a sample of protostars with a range in mass/luminosity

HEXOS

- Understand the physical and chemical processes relevant to star formation in the unique star forming regions: Orion and Sgr B2
 - CLASSIC EXAMPLES of phenomena found throughout the ISM
 - Hot Cores: Orion KL, Sgr B2 (N)
 - PDR's: Orion Bar
 - Shocks: Orion
 - Diffuse clouds: long line of sight Sgr B2 (M)
 - Most interstellar molecules were first detected in these sources
 - Templates for more distant star forming regions such as those observed in other galaxies
- Observations:
 - Unbiased complete spectral surveys using HIFI and PACS of 5 key sources in Orion and Sgr B2

HIFISTARS: H₂O and CO observations of AGB envelopes, PPNe, and PNe

- The life cyle of stars and the interstellar medium
 - Understand the death of Solar-type stars
 - Understand the mass balance of the ISM
 - Origin and evolution of water in circumstellar environments

Observations:

 Use a wide range of H₂O and CO lines to probe the evolution of the mass loss rate and physical conditions in a wide range of stellar ejecta before they merge with the ISM

MOLIS: Molecular line carriers in the ISM

- Understand the origin and evolution of the molecular universe by probing the "first chemical steps" in the diffuse ISM
 - What is the role of shocks and turbulence dissipation
 ?
 - What is the role of surface chemistry ?
 - How do molecules participate in grain growth in the ISM ?
- Observations: Absorption line studies against bright background sources targeting lines of simple hydrides
 - Oxygen chemistry (H₂O)
 - HF
 - Carbon chemistry (CH, CH⁺)
 - Carbon chains and rings
 - Nitrogen chemistry
 - Deuterium chemistry

WADI: The Warm and Dense ISM

- Understand the interaction of massive stars with their environment
 - What processes drive the disruption, evaporation, and dissociation of molecular clouds ?
 - How do stellar photons from massive stars affect the chemistry of the ISM ?
 - How shocks driven by massive stars drive the chemistry of their environment
- Observations:
 - Main cooling lines (OI, CII, H₂O) and simple hydrides of a sample of well-known PDRs and shocked gas regions

HEXGAL: PHYSICAL AND CHEMICAL CONDITIONS OF THE ISM IN GALACTIC NUCLEI

- Physics of large scale star formation in the nearby universe
 - The ISM in the galactic center as a template for galactic nuclei
 - The physics of the gas fueling obscured nuclei of starburst, ultra-luminous galaxies and active galactic nuclei
 - The interplay of activity and chemical complexity in galactic nuclei
 - The physics of the ISM of low metallicity dwarf galaxies
- Observations:
 - Atomic fine-structure lines (OI, OIII, NII, CI, CII)
 - Molecular rotational lines (H2O, CO)
 - Spectral surveys

- HIFI is uniquely suited to study the physics and chemistry of interstellar and circum stellar gas
- HIFI is the ultimate
 - Mean lean water machine !
 - Mean lean molecular machine !
 - Mean lean ISM machine !

