

Observing with the PACS Spectrometer

Part I

HERSCHEL CYCLE 1 OPEN TIME OBSERVATION PLANNING WORKSHOP

> HSC, ESAC 3-4 June 2010

Roland Vavrek (HSC) Dario Fadda, Phil Appleton (NHSC)

on behalf of the PACS ICC

PACS Spectrometer concept

Integral-field concept

47"x47" (5x5 pixels) FOV rearranged via an image slicer on two 16x25 detector arrays

<u>esa</u>

Integral-field concept

- Simultaneous 51-105 & 102-220 µm spectroscopy
- Performance:

esa

- $-\lambda/\Delta\lambda \sim 1500$
- Sensitivity:
 - $\sim 5 \times 10^{-18} W / m^2$ (5 σ , 1h)

Spectroscopy with PACS

Spectroscopy with PACS

PACS spectral bands

Grating angle – wavelength relation in Littow configuration 🔊

DBSERVATOR

Spectrometer sensitivity

Recalculated 1σ continuum- and line sensitivities from actual exposure time to HSPOT exposure (~450sec per 1nod and 1up- down)

Spectrometer resolution

Measured resolution in fair agreement with lab test and calculated resolution

HERSCHEL OBSERVATORY

Spectrometer wavelength calibration and instrumental profile

- Wavelength shift + skew with source offset from slit center (cross-slit direction)
- Characterization + corrections underway
- Do not over-interpret line shapes in maps

Spectrometer wavelength calibration: dependence on slit position

Calculated wavelength offsets for point source positions: at the slit border (solid colour lines), for typical pointing errors up to 2" (dashed colour lines) and measured line centre offsets for ± 1.5 " (dashed black line and crosses) and slit border (black crosses) for three spectral lines on the point like planetary nebula IC2501.

Pointing match chop/nod

• From (still limited) statistics, no problem for small chopper throw

• With large chopper throw (±3'), APE seems to apply for "Nod A" and "Nod B" individually - sometimes ok, sometimes a problem

Note the pointing related effects on Nod A/B data (blue/red profiles):

- Line centres are shifted
- profiles may be skewed
- Inconsistent A/B fluxes per module

→ ~5-15% spectrophotometric error (in integrated line flux)

HERSCHEL OBSERVATORY

Spectrometer "problem zones": leakage

Spectrometer flux calibration

- Pipeline uses nominal absolute and relative spectral response from ground tests
- In-orbit measurements of flux calibrators (asteroids, Neptune, Uranus, fiducial stars) give first correction factors to ground calibration, yielding a 30% absolute

Spectrometer Astronomical Observing Templates (AOTs)

Spectrometer Astronomical Observing Templates (AOTs)

Line Spectroscopy AOT: observation of individual narrow lines

Signal modulation Techniques

Range definition

Signal modulation

Techniques

- Chopping/nodding
 - − For isolated sources and rasters \leq 5 arcmin
 - Variable grating sampling for faint and bright lines

- Unchopped grating scan

- For observations of crowded fields and extended objects > 5 arcmin
- Mandatory off-position

Range Spectroscopy AOT: observation of broad lines, extended ranges or continuum

- Range scan (same concept as Line Spectroscopy) for broad lines
- SED mode for full-range continuum
- Nyquist sampling same as SED mode for restricted ranges for long-range continuum and bright lines

Chopping/nodding

- − For isolated sources and rasters \leq 5 arcmin
- For broad lines, multiple line coverage or continuum studies
- Unchopped grating scan
 - For observations of crowded fields and and extended objects > 5 arcmin

HERSCHEL OBSERVATOR

Chop/nod vs. unchopped grating scan

- Chop-nod: **PACS standard mode**, classical approach when a reference field is observed all the time, alternated with the target.
- Unchopped: a simple but fast (4x) grating scan along wavelength with a reference background observed at a different time. This still unreleased 2nd generation mode superseeds the wavelength-switching mode. Follow release guidelines: <u>http://herschel.esac.esa.int/AOTsReleaseStatus.shtml</u>
- The chop-nod is applicable only when the reference target is distant less than 6' from the target. This is a physical limitation due to the chopper. The mapped area cannot be bigger than 5'x5'.
- The unchopped scan is, for this reason, the only choice available when observing extended sources or structured, crowded fields.

Considerations about chop/nod mode

- Source flux is derived applying the double-differential scheme: F(observed) = [NodA(on-off)] + [NodB(on-off)] / 2 = [(T2+F(source)-T1] + [(T1+F(source)-T2] / 2 = F(source), where T1 and T2 are the telescope background fluxes at the two chopper positions
- Differential **on-off signal is very stable** even after instantaneous response changes (glitches), very efficient de-glitching of the raw signal
- The chop-nod mode is **suitable for faint- as well as bright targets**, PACS offers this mode **in the entire dynamic range** (i.e. flux calibrated)
- Continuum can be recovered, as well as line fluxes
- On-source positions are not identical for Nod A and B (explained later)
- The chop-nod technique **could be used for very extended regions** IF the sky background has a constant gradient over the scale 2x the chop throw, and it is homogeneous at the scale of the spectrometer footprint (i.e. the 25 spaxels see very similar background levels)

Advantages of unchopped scan

The unchopped scan has a certain number of advantages wrt the Chop-nod:

- of course, makes possible observing lines in extended sources
- the same region of the telescope mirror is observed and the same optical path is used when the grating is moving, so that we don't need any nodding (...but we need off-position)
- **transients are usually negligible** (except in case of very bright lines) while, in chop-nod, the continuous chopping produces transients. Flux calibration will be different in the two modes.
- the observations are **time-efficient**: the off position is observed for a shorter time in case of long observations.
- it is possible to map strips at any sky angle

HERSCHEL OBSERVATORY

Disadvantages of unchopped scan

The unchopped scan mode has also a certain number of disadvantages wrt the chop-nod technique:

- not recommended for faint lines, target lines needs to be above typically ~1 Jy peak-to-continuum and the continuum level can be recovered in a reliable way only for bright sources, i.e. at a minimum continuum level of ~ 20-30 Jy (>10-20% of the telescope background)
- **dark is computed from the calibration block**, while in chop-nod a simple subtraction on-off gets rid of the dark in a more accurate way (there are transients, anyway ...).
- it is not possible to follow the response variation with time in unchopped scan as in chop-nod where there is a constant reference to the off-position. So, the background subtraction is not precise as in chop-nod.
- Anyway, in case of faint background, a more precise estimate is probably available from broad-band photometry.

SPACE OBSERVATORY

HERSCHEL

Duration per grating position: [8 integrations] x [1/8 sec integration time] x [2 ABBA cycles] = 2 seconds

On every grating poistion:

- 16+1 readouts (ramps)
- 1 readout takes 1/8 second
- 2 chopper ABBA cycles

SERVATOR

Wavelength coverage

The wavelength coverage is slightly broader in unchopped scan

The number of grating steps is 75 in unchopped scan, while it is 48, 46, and 43 in B3A, B2B, and R1, respectively, for chop/nod.

This allows a better coverage of the continuum around the line and better dat reduction. In the example, an asymmetric line has been observed with unchopped scan.

In the off-position, all lines repeated only once (two internal scans)!

HERSCHEL OBSERVATORY

Time efficiency

The time estimator provides a conservative estimate of the time spent On source. It does not know about the subtleties of data reduction. For instance, in chop/nod for each 17 ramps which correspond to a step Of a grating scan, the first is considered as overhead but can be used. In the case of unchopped scan, the initial ramp of each grating step is considered as overhead, although it can be safely used. The following estimates give in brackets the values using the "overhead" ramp not considered by the time estimator.

ioia

SERVATORY

404

AOT calibration block

- On-target slew calibration block(s) on key wavelengths
- Calibrate the response and dark on one point of the RSRF, we believe the RSRF does not change (a lot) over the mission lifetime
- Chopping between the calibration sources (no grating movement)
- Homogeneous dataset over the entire mission lifetime
- One key wavelength per diffraction order:
 - flat part of the RSRF
 - close to the most frequently used lines

- First select target
- Choose which "blue" order? 3rd+1st or 2nd+1st

Note that if you have target lines in all three orders you will need 2 separate AORs

- Choose a line (manual or from list)
- Enter continuum and line flux saturation will trigger capacitance change to adjust the dynamic range warning in PACS time estimator message
- Select the Observing Mode
- If applicable: set up the mapping parameters
 - raster step sizes (follow guidelines of the PACS Observers Manual)
 - map orientation

HERSCHEL OBSERVATORY

Step by step...

Once opened HSPOT, choose the AOT (PACS Line- or Range Spectroscopy)

Step by step...

The AOT pup-up window appears. We can choose a name for the AOR, then select the wavelength band to observe one or more lines.

See Hspot general presentation on target selection...

Uni		BEneck 000	0				_
Unio	que AOR Lab	I. PSpect-000	5				
		Ta	arget: None	Specified	I		
	\subset	New Target	Modify T	arget (Target List	\supset	
		Number of visi	ble stars for t	he target:No	one Specified		
				•			
	Selection	Wavelength ran	avelength	Settings	5		
	Wavelength	ranges [70-2	201 microns	(2nd + 1st o	orders)	:	
	Wavelength		.20]	(2.1.4 - 151 - 6			
			PACS Line	e Editor			
e Id	Waveleng	Dedalation Line	EL LI EL				
	waveleng	Redshifte Line	Flux Line Flu	Continuu.	Line Width	Line Wid Lir	ne Repe
	waveleng	Reashifte Line	Flux Line Flu	Continuu.	Line Width	Line Wid Lir	ne Repe
	waveleng	Reashifte Line	Flux Line Flu	I Continuu.	Line Width	Line Wid Lir	ne Repe
	Waveleng	Reasnitte Line	Flux Line Flu	ı ∣Continuu.	Line Width	Line Wid Lir	ne Repe
	Waveleng	Reashinte Line	Flux Line Fit	Continuu.	Line Width	Line Wid Lir	ie Repe
	marcicity	Reashinte	Flux Line Flu	Continuu.	Line Width	Line Wid Lir	ie Repe
Add	Line Manual	y Add Li	ne From Data	base)	Line Width	Line Wid Lin	Line
Add	Line Manual	y Add Li	ne From Data	base	Modify Line	Line Wid Lir	Line
Add	Line Manual	hift selection	ne From Data	base	Modify Line	Line Wid Lir	Line
Add	Line Manual Reds Unit	ly Add Li hift selection Redshift (z)	ne From Data	base	Modify Line	Line Wid Lir	Line
Add	Line Manual Reds Unit	hift selection Redshift (z)	ne From Data	base) Value 0. de Settir	Modify Line .000000	Line Wid Lir	Line
Add	Line Manual Reds Unit	ly Add Li hift selection Redshift (z) Obs	ne From Data	base Value 0. Vadue 0.	Modify Line .000000 I GS grating scan o	Line Wid Lir	Line
Add	I Line Manual Reds Unit urce type, ch	ly Add Li hift selection Redshift (z) Obs	ne From Data	base Value 0. Value 10. Nodding, g Number of	Modify Line 000000 MgS grating scan o f cycles 1	Delete	Line
Sou	Line Manual Reds Unit urce type, chi Set the	ly Add Li hift selection Redshift (z) Obs opping and unch Observing Mod	ne From Data	base Value 0. Value 0. Nodding, g Number of To control 1	Modify Line Modify	Delete	vcles
Sou	Line Manual Reds Unit urce type, cho Set the	ly Add Li hift selection Redshift (z) Obs pping and unch Observing Mod	ne From Data erving Mo hopped scan es	base Value 0. Value 0. Nodding, g Number of To control t adjusting th	Modify Line 000000 NGS grating scan o f cycles 1 the absolute se he number of in	Delete	Line ycles der es.
Add	I Line Manual Reds Unit urce type, cho Set the	ly Add Li hift selection Redshift (z) Obs pping and unch Observing Mod	ne From Data	base Value 0. Value 0. Nodding, g Number of To control t adjusting th	Modify Line Modify Line .000000 MGS grating scan o f cycles 1 the absolute se he number of in	r mapping consilier	vcles
Add	Line Manual Reds Unit urce type, ch Set the Ob	ly Add Li hift selection Redshift (z) Obs opping and unch Observing Mod	ne From Data	base Value 0. Value 0. Nodding, g Number of To control 1 adjusting th	Modify Line 000000 MgS grating scan o f cycles 1 the absolute se he number of in AOR Visibi	Delete	Line vcles der es.
Sou	Line Manual Reds Unit urce type, chr Set the Ob	ly Add Li hift selection Redshift (z) Obs opping and unch Observing Mod	ne From Data	base Value 0. Value 0. Value 0. Nodding, g Number of To control t adjusting th	Modify Line 0000000 1gS grating scan o f cycles 1 the absolute se he number of in AOR Visibi	Line Wid Lir Delete r mapping consistivity consistegration cycl ity	Line ycles der es.

Step by step...

One can add a line manually or using the database. In this example, we use the database and select the C II+ line. Remember to select the box. Only highlighting the line does not select it.

Origin	Name	Transition	Wavelength	Line Width	Selected	
DEFAULT	ОН	2П1/2J=3/	163.122	1		-
DEFAULT	SH	2П3/2J=5/	216.784	1		
DEFAULT	Hα	H15α	169.412	1		
DEFAULT	Ηα	H16α	204.412	1		
DEFAULT	CII	C+	157.741	1	V	
DEFAULT	HD	1-0	112.07	1		7.

Step	by	ste	ep	PACS Line S

Back in the AOR window, the selected line appears in the list. At this point, Fill the PACS Line Editor table, and insert the redshift of the object.

To change the number of repetition on one line, double click on the line.

$\Theta \circ \Theta$	U		PAC	CS Line Spectro	scopy			
Un	ique AOR La	abel: PACS	Line Spectr	oscopy AOR	example			
	(Tar Posi New Targ	rget: NGC tion: 23h0 et	7469 <i>Type</i> 3 m15.62 Modify Targe	E: Fixed S s,+8d52n	ingle 126.4s Target List	\supset	
	:	Number of Star tracker	visible stars target: Ra:	for the targ 165.815 deg	et: 13 rees Dec:	8.874 degree	25	
	Selection Waveleng	of wavelen 9th ranges	Wave gth ranges [70-220]	elength Se	ettings d + 1st ord	ers)	\$	
			PAG	CS Line E	ditor			
Line Id	Wavelengt	Redshifted	. Line Flux	Line Flux	Continuu	Line Width	Line Widt.	Line Repeti
II C+	157.741	160.31	213.00	10^-18	4,900.00	200.00	km/s	2
I 3P0	145.520	147.89	15.36	10^-18	4,900.00	200.00	km/s	3
II 3P2	121.900	123.89	51.23	10^-18	4,900.00	200.00	km/s	2
) III 3P1	88.360	89.80	128.07	10^-18	3,300.00	200.00	km/s	2
Ac	ld Line Man Re Ur	ually edshift selec nit Redsh	Add Line Fr ction ift (z)	rom Databas	e Mo	odify Line	Delet	e Line
Sou	rce type, ch	opping and the Observi	Observi wavelength ng Modes	ing Mode a switching	Setting Nodding/ Number o To control adjusting th	S wavelength f cycles 2 the absolute he number of	switching sensitivity c integration	cycles onsider cycles.
	C	Observation	Est)	Add Comme	nts)	AOR Visibili	ty	
						Const		OK
\bigcirc						Cance		UK

HERSCHEL OBSERVATORY

Step by step...

Click on a line: all the information about the selected line appears.

Values entered here are copied into the Line Editor

000	Update a line					
Spectral line parameters	<u></u>					
Line ID	O I 3P0-3P1					
Wavelength (µm)	145.520					
Line flux unit	10^-18 W/m^2					
Line flux	15.36					
Continuum flux density	(mJy) 4,900.00					
Line width unit	km/s 🛟					
Line width (FWHM)	200.00					
Line repetition facto	r					
Line repe	tition 3					
The relative line streng line) can be set by the Note: the sum of lin on-source tin	The relative line strength (fraction of on-source time per line) can be set by the line repetition factor for each line. Note: the sum of line repetition factors affects the on-source time per integration cycle.					
	Cancel OK					

HERSCHEL OBSERVATORY

Step by step...

Once back in the AOR window, you are ready to choose the observing mode. Click on the button and a new window appears.

O O Observing Modes	O O O Observing Modes
Observing Mode Settings Choose one of the modes below.	Observing Mode Settings Choose one of the modes below.
None selected Pointed Pointed with dither Mapping	None selected Pointed Pointed with dither Mapping
Observing mode selection Chopping/nodding Chopping/nodding (bright lines) Unchopped grating scan Observing mode parameters Chopper throw Small Medium Medium Angle to (degrees) 0.00	Observing mode selection Chopping/nodding Chopping/nodding (bright lines) Wavelength switching Unchopped grating scan Observing mode parameters Chopper throw Chopper avoidance angle Angle from (degrees) 0.00
Off position	Large Angle to (degrees)
TypeBy offsetBy positionRA offset (arcmins)0.00Dec offset (arcmins)0.000RA (degrees)0.0000Dec (degrees)0.0000Choose Position	Raster Map Off position Map reference frame Type Instrument Sky Raster point step (arcseconds) 2.0 Raster line step (arcseconds) 2.0 Orientation angle (degrees) 0.0 Number of raster points per line 0.0000 Repeat off-position Repeat off-position Repeat off-position Number of raster position

Part II tomorrow:

- Spectrometer focal plane geometry
- Mapping strategies
- Range spectroscopy: use of parallel ranges
- Sensitivity estimates, use of repetitions and cycles
- Flux estimates and saturation limits
- AOR design: hands-on session

Observing with the PACS Spectrometer

Part II

Nodding skew angle has been optimised for the central spaxel (**spa**tial pixel) Other spaxels do not see along the same LoS for the two nod positions

- either use the central spaxel only and apply point-source correction factor

Focal plane geometry

- Apparent field-rotation increasing with chopper throw
- Use "Small" (1.5') chopper throw if possible (for point sources)
- If you suspect your source is not a point-source or you are very unsure of its position to 1-2", probably best NOT to use POINTED mode, but a fully sample mapping mode.

Spectrometer PSF

- Modeled/measured at 62µm and 124µm /on Neptune
- "Trifoliate" structure, also seen in photometer

ATOR

HERSCHEL OBSER

Spectrometer "beam efficiency"

- Fraction of PSF seen by (centered!) 9.4"x9.4" spatial pixel varies with wavelength
- Point source correction table available in HIPE

Mapping strategies

- Raster map step sizes have been optimized, based on the focal plane geometry and PSF
- Sky mosaics:

For raster maps with stepsize greater than 30" (i.e tiling the sky rather than oversampled rasters) there are no particular recommendations for step sizes. Typical step sizes are 47" (no overlap between the different raster positions) and 38" (approximately one row or column of spatial pixels overlap between the different raster positions).

• Nyquist sampling map of extended objects:

For extended objects, mapping with oversampling, i.e. with step size smaller than one spaxel, may be very time consuming. Therefore this mapping strategy is suggested with step sizes larger than one spaxel, but such that the beam is Nyquist sampled. **Blue: point step=16.0"**, **line step =14.5" Red: point step=24.0"**, **line step =22.0**"

• Full PACS spatial resolution of compact objects:

In order to map the sky at full PACS spatial resolution, step sizes smaller than a spaxel have to be used. Since this increases the observing time, this mode is strongly suggested to be used only for mapping point-like or almost point-like objects. Blue: 3x3 raster with step size equal to 3.0" in both directions Red: 2x2 raster with step size equal to 4.5" in both directions

HERSCHEL OBSERVATORY

Mapping strategies

5x5 "Nyquist sampling" (short-λ) vs. 2x2 "Sky mosaic"

Mapping strategies

3x3 "Nyquist sampling" (long-λ) vs. 2x2 "Sky mosaic"

Pointed vs. full resolution mapping

Map orientation angle

- The recommended raster step/line size settings have been optimised only for zero degree map orientation in instrument coordinates. In case of applying sky reference frame then optimal spatial sampling cannot be guaranteed because the PACS footprint rotation with respect to the raster line orientation depends on the position angle of the detectors footprint (determined by the day of the observation). The sky reference frame can be selected only in unchopped grating scan mode. Please note, in unchopped grating scan mode the HSpot default option is 'sky' reference, but we highly advise to switch to 'instrument' mode.
- SKY frame: In unchopped grating scan mode, if an AOR raster covers an elongated area (e.g. a nearby edge-on galaxy) then the observer might have no other option than using sky reference frame and turn the raster to the right direction. If the target is at higher ecliptic latitude then you may select instrument reference frame and put a time constraint on the AOR.
- **INSTRUMENT frame:** Chopped rasters cannot be rotated with a specific orientation angle, the chop direction is hard-coded in instrument reference frame with zero angle orientation (i.e. the chop direction is perpendicular to a raster line). If the target is at higher ecliptic latitude then put a time constraint on the AOR. This way the array and the whole raster can be rotated to the desired angle by a time dependent array position angle.

Map orientation angle

THEL OBSEI

Chop-nod mapping is limited to instrument plane (chops along z axis). Limited ability to map a feature without multiple AORs = 4.1hrs 3 x (38 x 38" 5 x 2 raster) one line! Unchopped grating scan in RA/Dec Coords. 38 x 38 " 20 x 2 raster at orientation = 135 degrees = 3.7 hrs clock time

Range spectroscopy: use of parallel

OBSERVATORY

SPACE

HERSCHEI

OK

00	PACS Time Estimation						
Instrument performance summary							
_ ⊺ Ti	ime Estimation Breakdown						
	On-source time (s)	2096					
	Calibration time (s)	124					
	Instrument and observation overhead (s)	171					
	Observatory overhead (s)	180					
	Potal time (s)	2447					
	Range Sensitivity Plots PACS Time	Estimator Messages					
		Done					

HSpot calculates the parallel ranges
Sensitivities are for individual ranges!
→ take into account for observation design

Repetition factors ... and how blocks are defined in HSpot

HERS

Depth of the observation is set via repetition factors:

- Line/Range repetition for relative Line/Range strength, total number of repetitions is ≤ 10 to limit the maximum block duration
- Nodding/grating/mapping cycles define how many times a block has to be repeated. Adjust the absolute observing depth.
- Overlap between pointing blocks (d1, d2 step size < 47"), this is not taken into account in sensitivity estimation

Repetition factors vs. observing cycle vs. complete AOR

If you have one weak line (say [NII]205mm) and one strong one [CII]158, you can increase the number of repetitions on the [NII] line at the expense of the brighter line. e. g. 9 reps [NII], and say 1 rep for [CII]. If you need more time on both lines you can then increase the number of cycles.

- Single pointing mode 1 line, 2 repetions
 Total time = 952s (or source*=688s, cal=129s)
- Single pointing 1 line, 2 cycles

Total time = 985s (on source 688s) Extra inst. overhead of 33s!

Single pointing 1 line, 1 rep, 2 AORs
 Total time = 2 x 586 (on 688s; cal=2 x 129) = 1172s
 but you get 2 cal blocks..very inefficient..

Time estimation and S/N calculation

• AOT cost (includes time for slewing to source): 445 + 180 [sec] = 625 [sec]

Attention!!

000

The Capacitance has changed from the default value 0 to the higher value 4 due to high flux density in one or several requested lines

This will cause a loss of sensitivity in the faintest lines. Please refer to the User's manual, and/or to the PacsLineSpec Release notes for more informations

Observing time for O I 3P1-3P2

Estimated SRC+REF time: 384 [sec] for 63.185 [µm] with line repeated 1 time(s)

Accumulated SRC+REF time estimation

Saturation limits

Continuum limits with the smallest and largest integration capacitor: saturation happens if the flux per resolution element is above limits for the highest capacitor (telescope background is included)

For range spectroscopy, the expected flux at the maximum response is extrapolated via a Rayleigh-Jeans law from the reference wavelength and corresponding flux estimate. The appropriate integrating capacitance of the CRE is then chosen for the entire observation to avoid saturation.

