Introduction to the Splinter on Mars and the Giant Planets

Carsten Kramer Universität zu Köln Member of the HIFI Calibration Team

Introduction to the Splinter on Mars and the Giant Planets

Overview

– Website:

hera.ph1.uni-koeln.de/~kramer/herschel_calibrators gives presentations and information collected during past meetings in

Leiden 12/04, Cambridge 9/05, Pasadena 10/06.

- Discussion topics for today:
 - Absolute flux
 - Variability

Why are celestial calibrators essential?

Antenna diagrams (the beams):

- Photometric Calibration

aperture and main beam telescope coupling efficiencies

- Beam shapes:

widths/resolutions, 20dB diagrams (exact beam profiles can only be determined in-orbit).

• Instrument properties:

Spectrometers: frequency calibration (resolution, line shape, shifts, strengths, ...)

Pointing

Test of observing modes

Visibility of Herschel

• One source is not sufficient

Herschel Calibration Workshop #2 Introduction on Mars and the Giant Planets

Visibility of Herschel

A posteriori calibration

- So, Mars will likely not be visible for a long time
- That doesn't stop us from using it
- A posteriori calibration is also possible
 - Beam calibration of HIFI to a very low level has to be postponed, unless Jupiter is used. However, this may trigger new problems
- For Uranus and Neptune a similar problem exists but for a much shorter period
- What is the use of Saturn -> rings are problematic
- Asteroids: Ceres, Vesta will be important for photometric calibration

Herschel Calibration Workshop #2 Introduction on Mars and the Giant Planets

Agenda

11h25 Welcome (R.Moreno/C.Kramer)

Mars:

11h40 A Mars continuum model for calibration of Herschel (E.Lellouch)
12h00 Mars models for Herschel (B.Butler)
12h20 Calibration of Herschel/HIFI in the CO absorption lines (P.Hartogh)

Giant Planets:

12h40 Models of Giant Planets (R. Moreno)

13h10 Lunch

Uranus & Neptune:

14h30 Uranus and Neptune models for Herschel (G. Orton)15h00 Uranus in the Herschel Time Frame (M.D. Hofstadter)

END

Herschel Calibration Workshop #2 Introduction on Mars and the Giant Planets

Visibility of Herschel

• Not even Mars, Uranus, and Neptune are sufficient.

Herschel Calibration Workshop #2 Introduction on Mars and the Giant Planets Introduction to the Splinter on Mars and the Giant Planets

Carsten Kramer

- The need for celestial calibrators
- Constraints of Herschel
- Selection criteria
- Potential primary flux calibrators:
 - Uranus / Neptune
 - Mars
- Open questions

Expected properties of Herschel

• Pointing accuracy

Absolute 1σ pointing error (APE)

requirement:3.7"(results in a flux error of 20% at 158 μm for point source)goal:1.5"(error of 4% at 158 μm)

• Beam widths & Aperture efficiencies Expected values:

500 GHz (600 μm) 45" 72%

1.9 THz (158 μm) 12" 64%

How is the remaing power distributed, i.e. how does the PSF couple to the sky ?

• Slewing times

~15 min for 90 degrees

Need for clever observing strategy. Need for many calibrators.

Requirements on calibration sources

Point-like sources Non-variable Good sky distribution HIFI (12" beam), SPIRE (18" beam), PACS (6") HIFI, SPIRE, PACS HIFI, SPIRE, PACS

Photometric calibration:

Well modelled SED HIFI, SPIRE, PACS (< 10%)

no (few) lines HIFI, SPIRE, PACS

brightness HIFI: bright continuum source

SPIRE: Not too bright (Neptune is at upper end of dynamic range)

PACS: Uranus & Neptune

Frequency calibration:

Compact sources with rich spectrum HIFI, SPIRE, PACS

Simple line profiles

Line fluxes known or predicted

Different sources for different questions

Body	Date	D	T _B	Flux	HIFI
		["]	[K]	[Jy]	
Saturn	15.5.2007	16.9	135	55100	strong, large
Mars	1.10.2007	9.8	226	36200	strong
Uranus	1.7.2007	3.6	60	662	weak, point-like
Ceres	1.1.2008	0.6	196	94	very weak

at 1.9 Thz (HIFI Spatial Response Framework document)

Different sources for different questions Suitability estimate for HIFI:

	Photome	etry	Spectroscopy
	Aperture	Beam	
	Efficiency	Shape	
Saturn	No	Yes (30 dB)	Maybe
Mars	Yes	Yes (30 dB)	Yes (H_2O, CO)
Uranus	Yes	No	Restricted (H_2O)
Ceres	Yes	No!	No!

The potential photometric calibrators:

• Temperature variations of the low atmosphere (cm observations of Hofstadter & Butler 2003) *Talk of Mark Hofstadter*

<u>The potential photometric calibrators:</u> <u>Uranus</u>

Con:

- Emission is pretty weak/too strong
- Stratosphere: H₂O, CO Others: H₂, He, NH₃, PH₃, H₂S, CH₄

- Variability visible in NIR Keck AO observations
- Temperature variations of the low atmosphere (cm observations of Hofstadter & Butler 2003) *Talk of Mark Hofstadter*

Herschel Calibration Workshop #2 Introduction on Mars and the Giant Planets

The potential photometric calibrators Uranus: Uranus model

Pro:

- No surface Continuum due to H₂, He, CH_{4 ε}
- Fast rotation
- Pointlike (3.5")
- ISO/LWS prime flux calibrator, cf. Burgdorf ea 98
- Atmospheric model exists: R.Moreno's thesis (1998)

Figure 5.1: Uranus model used in the LWS photometric calibration.

- Voyager/IRIS data (5-50 μm): temperature verticle profile well known
- Observations at centimeter (Hofstadter & Butler), millimeter (Gurwell & Butler), submm wavelengths (Serabyn & Pardo et al.), HST & Keck IR (dePater et al., Hammel et al.), Spitzer (G.Orton) *Infos from Bryan*

The potential photometric calibrators Neptune:

- Too weak (HIFI) / strong (SPIRE, PACS)
- Similar to Uranus

Con:

• Many atmospheric lines

Pro:

• Frequency calibrator? (HIFI)

Herschel Calibration Workshop #2 Introduction on Mars and the Giant Planets

The potential photometric calibrators: <u>Mars</u>

Con:

- Teneous but rich atmosphere: H₂O, CO, CO₂, ...
- Water lines are very broad (>1 GHz from SWAS, ODIN)
- Seasonal variations of Water lines (science case!)
- Dust storms (change of atmospheric temperature structure)
- Surface features (dust, ice caps, seasons)

MARS: OBSERVATIONS ODIN

<u>The potential photometric calibrators:</u> <u>Mars</u>

Pro:

- Bright ($T_{B} \sim 210$ K) and compact (<13")
- Thermophysical model by Rudy (Rudy et al. 1987, Icarus, 71, 159)
- Agreement between model and ISO/LWS 43 to 196 μm data: ~3%
 (Sidher, Griffin, et al. 2000, Icarus, 147, 35)

- Other models by T.Encrenaz, E.Lellouch, R.Moreno (LESIA) with F.Forget (LMD); P.Hartogh (MPAE)
- Very well studied object also by in-situ observations (but not in the FIR)
- Often used as the primary calibrator (SWAS, Griffin & Orton, ...)

Talks of Glenn Ortin, Bryan Butler, and Paul Hartogh

<u>The potential photometric calibrators:</u> <u>Mars</u>

Herschel Calibration Workshop #2 Introduction on Mars and the Giant Planets Peak fluxes agree within +-5%. February, 6.-8., 2008 - Madrid

Introduction to the Splinter on Mars and the Giant Planets Some Questions:

- •Which of the details can be ignored ?
- •Mars: can we ignore the atmosphere in the "windows"?
- •Giant Planets: can we ignore the lines in the atmospheric windows ?
- •Identify incompleteness of models ?
- Preparatory observations: ground-based (FTS/CSO, ...) space (ASTRO-F, Cassini/CIRS (Titan, Saturn, Jupiter), BLAST, SOFIA, ... + Herschel !)

