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Calibration Objectives
– To be addressed in workshop:

• Cross-calibrate thermophysical models of 
Mars and Jupiter with those of Uranus and 
Neptune

• Transfer the high-accuracy radiometric
measurements of spacecraft and internal 
calibration systems to a more general system



Calibration Objectives
Presented here:

• Evaluate the temperature structure of current standard 
models using Spitzer IRS observations.

• Determine meridional (latitudinal) variability of 
temperatures to predict latitudinal variability of 
radiances.

• Assess time variability, independently of the slow 
changes of the projection of spatially-dependent 
variations.



Spitzer IRS Observations of 
Uranus

• Observations currently used date from Cycle1

• Longer integration times and multiple redundancies 
between orders obtained in December, 2007, in Director 
Discretionary time as a part of Uranus “equinoctal
studies” (also justified by Herschel calibration needs)

• These data are have not yet been released, but should 
be soon, work to be done over next 6 months by 
graduate-student intern, Cécile Merlet (Ecole Normale
Sup., Paris), arriving 12 Feb.
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current model

Voyager radio occultation

Revised disk-averaged temperature may,
coincidentally, be closer to Voyager radio
occulation results
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Voyager radio occultation



Ground-Based Thermal Images of 
Uranus

• First mid-infrared observation of Uranus

• ESO, Very Large Telescope (VISIR instrument), 2-3 
September 2006 (UT), with Therese Encrenaz and 
Cedric Leyrat

• 1-µm wide filter centered at 18.7 m

• Spectral region controlled by collision-induced H2

• Sensitive to upper tropospheric/lower stratospheric 
temperatures 
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Uranus at 18.7 µm
VISIR/UT3 Observations, ESO/VLT, 2 – 3 September 2006

Sensitive to temperatures near 80-100 mbar (upper troposphere)
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Uranus at 18.7 µm
VISIR/UT3 Observations, ESO/VLT, 3 September 2006

(best observation set)

Sensitive to temperatures near 80-100 mbar (upper troposphere)



Comparison with Voyager IRIS

V

VISIR 3 Sept 2006



Uranus 220-GHz SMA 
• Sensitive to temperatures near p=2 bar
• Zonal-mean T(2 bar) recovery does not yet account for beam size

Southern hemisphere slightly warmer than northern.



Spitzer IRS Observations of 
Neptune

• Observations currently used are from Cycles 1 and 2

• Cycle-2 observations have longer integration times and 
sky background checks

• Data have been checked “by hand” for “rogue” pixels by 
Amanda Mainzer (JPL)

• Spectrum shows portion of spectrum sensitive only to 
T(p) (the collision-induced H2 absorption) over a 
narrower spectral range than Uranus
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Ground-Based Thermal Images of 
Neptune

• Gemini N, (Michelle instrument) 4-5 July 2005 (UT) with Heidi Hammel
– 7.8 µm (CH4 emission) stratospheric emission
– 12.5 µm (C2H6 emission) stratospheric emission

• ESO, VLT (VISIR instrument), 2-3 September 2006 (UT), with Therese Encrenaz and Cedric 
Leyrat: various filters:

– 8.7 µm (CH4, CH3D emission) stratospheric emission
– 12.5 µm (C2H6 emission) stratospheric emission
– 17.8,  µm (H2 “CIA” emission) tropospheric emission
– 18.7 µm (H2 “CIA” emission) tropospheric emission

• Gemini S, (T-Recs instrument): 2007
– 17 July (7.9 µm) stratospheric emission
– 30 Aug (12.5 µm) stratospheric emission
– 19 Sep (7.9 µm) stratospheric emission
– 21 Sep (12.5 µm) stratospheric emission

• 17.8, 18.9 µm controlled by collision-induced H2

• 7.9, 8.7 µm sensitive to stratospheric temperatures, CH4 abundance

• 12.5 µm sensitive to stratospheric temperatures, C2H6 abundance



Uranus and Neptune at 18.7 µm
VISIR/UT3 Observations, ESO/VLT, 2 – 3 September 2006

Sensitive to temperatures near 110 mbar (upper troposphere)
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Observations with VISIR, Very Large Telescope
1-2 September 2006

17.6 µm

18.7 µm



Polar Projection of Deconvolved 17.6-µm 
Image



100-mbar Temperatures

18.7 µm

17.8 µm



Spatially resolved spectroscopy of of H2 S(1) quadrupole,
sensing 0.1-mbar stratospheric temperatures:

N
S

• Continuum is like image: 100-mbar temperature are 9 K warmer
in the south

• Center of H2 quadrupole line: 0.1-mbar temperatures are only 
3 K warmer in the south

• Confirms that a CH4 gradient must exist at p ~ 0.1 mbar to 
explain the steep latitudinal gradient in CH4 emission:



Tropopause CH4 VMR

18.7 µm

17.8 µm

disk-averaged values from mid-ir

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
disk-averaged values from visible/near-ir

CH4 migration → ?



Stratospheric Emission

CH4 C2H6

∆t =6.83 hrs                                    ∆t =2.25 hrs∆t = 6.7h ∆t = 2.0h



16h (magnetic) rotation
period requires there to
be two features

A single feature requires
the local rotation rate to be
12.2h
(close to the period of the
local winds)

1
12.2h



Similar feature seen in Gemini/North 7.9-µm thermal images
4 July 2005 

(but temperature variation is lower amplitude,~1 K)



No such features seen in Gemini/South (T-Recs)
7.9- or 12.5-µm thermal images in July-Sept 2007

17 Jul, 7.9 µm

19 Sep, 7.9 µm 21 Sep, 12.5 µm

30 Aug, 12.5 µm



Tentative Conclusions
• No significant variations of tropospheric 

emission are seen over rotation of Uranus and 
Neptune from Spitzer spectra at different 
longitudes

• Variations of temperatures not seen spatially 
above the current SNR

• Slow variations are seen in Uranus, where 
spatial measurements show the “spring pole”
significantly colder than Voyager (work in 
progress in next few weeks)

• Substantial unpredictable variations are seen in 
Neptune, but only in the stratosphere



To be done
• Continued observations

– 16 hrs of VLT (VISIR) time on Uranus (spatiallly resolved 
imaging at new wavelengths and spectroscopy)

– 16 hrs of VLT (VISIR) time on Neptune (spatially resolved 
imaging at new wavelengths and spectroscopy)

– Collaborative work will be done, requesting GranTeCan
(Canaricam in mid-ir) time with Agustin Sanchez-Lavega (U. del 
Pais Vasco)

– Time will be requested from Subaru and Gemini for 2008b 
(scientific case must be strong)

• Continued work to model Spitzer observations of Uranus 
and Neptune 

• Incorporation of formal retrieval algorithm (Oxford U.), 
Leigh Fletcher (new JPL NASA postdoc)

• Continued modeling to understand spatial variability and 
distinguish true time variations from changing geometry: 
assess recent vs pre-1990 observations of spectrum



1.3 mm obtained

18.6 µm obtained


