

The Asteroid Preparatory Programme for Herschel, Akari and ALMA

Thomas G. Müller

& Herschel Calibration Steering Group & Akari calibration team

Do you really want to use asteroids as calibrators?

25143 Itokawa as seen by Hayabusa; Credit: ISAS, JAXA

Reports on asteroid work (HCalSG)

- HCalSG#2 presentation, Nov. 2002
- HCalSG#5 presentation, Oct. 2003
- Herschel Calibration Workshop Nr. 1, Leiden, Dec. 2004
- HCalSG#10 presentation, Nov. 2005
- HCalSG#14 presentation, Feb. 2007
- Herschel Calibration Workshop Nr. 2, Madrid, Feb. 2008

Motivation

Asteroid Selection Process

- Starting list: all known large main-belt asteroids with diameters $\geq \sim \! 100 \, \text{km}$
- high quality, smooth, low amplitude lightcurves (visible)
- good quality spin vector and rotational properties (derived from multi-aspect visual lightcurves)
- availability of "Kaasalainen" shape models (lightcurve inversion complemented by radar, adaptive optics, occultations, HST, ...) or at least high-quality ellipsoidal shape models
- independent diameter and albedo information (occultation, speckle, HST, flybys, ...) \rightarrow very often not available!
- multiple thermal observations (ground-based N-/Q-band & submm/mm; IRAS, ISO, MSX, Akari, Spitzer)
- exclusion of binaries, M-types, poor spin vectors, elongated objects

55 Selected Asteroids

- no extreme thermal lightcurve variations expected (up to max. 10-20% over several hours; typically < 5-10%; many < 1%)
- thermal behaviour is dominated by the properties of the dust regolith which is expected to be present on all large main-belt asteroids (and observing and illumination geometry, albedo, ...)
- all 55 asteroids have N-/Q-band observations (31 have high quality N-/Q-band observations); 13 objects with submm/mm observations; 51 asteroids have IRAS, 14 ISO and 4 MSX observations; 54 have Akari-IRC observations (9 and 18 μ m) and most of them also Akari-FIS observations at far-IR wavelengths; about 20 (tbc.) have Spitzer-MIPS (70/160 μ m) observations, 6 have thermal lightcurves taken with Spitzer-IRAC
- "Kaasalainen" shape models exist for 33 asteroids; 2 shape models from HST, 19 ellipsoidal shape models, 2 spherical shape models

Nr.	Name	Quality	Observations
1	Ceres	А	gbNQ(IRTF,UKIRT),IRAS,gbSubmm/MM(JCMT,HHT,SCUBA,CSO),
			ISO(PHT,LWS,SWS),Akari-IRC
2	Pallas	В	gbNQ(IRTF,UKIRT), <mark>IRAS</mark> ,gbSubmm/MM(JCMT,SCUBA,CSO),
			ISO(PHT,LWS,SWS),Akari-IRC
3	Juno	A	gbNQ(UKIRT), <mark>IRAS,ISO</mark> (PHT,SWS),Spitzer-MIPS,Akari-IRC
4	Vesta	A-B	gbNQ(UKIRT,SUBARU), <mark>IRAS</mark> ,gbSubmm/MM(JCMT,ATCA,CSO),
			ISO(PHT,LWS,SWS),Akari-IRC
6	Hebe	А	IRAS,ISO(PHT),Spitzer-MIPS,Akari-IRC
7	Iris	D	IRAS,Spitzer-MIPS,Akari-IRC
8	Flora	В	IRAS, Akari-IRC
9	Metis	С	gbNQ(CTIO),gbSubmm/MM(ATCA),MSX,ISO(PHT),Akari-IRC
10	Hygiea	B-C	gbNQ(IRTF,UKIRT), <mark>IRAS</mark> ,gbSubmm/MM(JCMT,SCUBA),
			ISO(PHT,LWS,SWS),Akari-IRC
12	Victoria	В	gbNQ(VISIR),IRAS,Spitzer-MIPS,Akari-IRC
17	Thetis	D	IRAS, Ákari-IŔC
18	Melpomene	В	IRAS,Spitzer-MIPS,Akari-IRC
19	Fortuna	D	Spitzer-MIPS, Akari-IRC
20	Massalia	В	IRAS, ISO(CAM),Spitzer-MIPS,Akari-IRC
21	Lutetia	В	gbNQ(TIMMI,IRTF,VISIR), <mark>IRAS</mark> ,Spitzer-MIPS,Akari-FIS,Akari-IRC
23	Thalia	В	IRAS,MSX,Spitzer-MIPS,Akari-IRC
24	Themis	В	gbNQ(SUBARU), Akari-IRC
28	Bellona	В	gbNQ(VISIR),IRAS,MSX,Akari-IRC
29	Amphitrite	В	gbNQ(TIMMI), <mark>IRAS</mark> , gbSubmm/MM(CSO),Akari-IRC
31	Euphrosyne	B-C	IRAS, Akari-IRC
37	Fides	B-C	IRAS, Akari-IRC
40	Harmonia	B-C	gbNQ(VISIR),IRAS,Spitzer-MIPS,Akari-FIS,Akari-IRC
41	Daphne	B-C	IRAS,Spitzer-MIPS,Akari-IRC
42	Isis	В	gbNQ(TIMMI), <mark>IRAS</mark> ,Spitzer-MIPS,Akari-IRC
47	Aglaja	A-B	IRAS, Akari-IRC
48	Doris	В	IRAS, Akari-IRC
52	Europa	A	gbNQ(TIMMI),gbSubmm/MM(CSO),IRAS,ISO(SWS),Akari-IRC
54	Alexandra	В	gbNQ(UKIRT), <mark>IRAS,ISO</mark> (PHT)
56	Melete	B-C	gbNQ(VISIR),IRAS,Akari-IRC

Nr.	Name	Quality	Observations
65	Cybele	А	gbNQ(UKIRT,TIMMI,UCL,IRTF),IRAS,ISO(PHT,CAM),
60	Hesperia	R	appio(TIMMI) VISIP) IPAS Akari-EIS Akari-IPC
09 95	То	B	abNO(TIMMI, VISIN), INAS, ARAITI IS, ARAITINC abNO(TIMMI, VISIN), abSubmm (MM(CSO) IDAS Spitzor MIDS
05	10	В	Akari-FIS, Akari-IRC
88	Thisbe	A-B	IRAS, Akari-IRC
93	Minerva	A-B	IRAS, MSX, Akari-IRC
94	Aurora	В	gbNQ(VISIR), <mark>IRAS</mark> ,Akari-FIS,Akari-IRC
106	Dione	С	gbNQ(UKIRT),IRAS,ISO(PHT),gbSubmm/MM(JCMT),Akari-IRC
165	Loreley	B-C	IRAS, Akari-IRC
173	Ino	B-C	IRAS, Akari-IRC
196	Philomela	B-C	gbNQ(VISIR),IRAS,Akari-FIS,Akari-IRC
230	Athamantis	A-B	gbNQ(VISIR),IRAS,Akari-FIS,Akari-IRC
241	Germania	B-C	IRAS, Akari-IRC
283	Emma	B-C	gbNQ(VISIR),IRAS,Akari-FIS,Akari-IRC
313	Chaldaea	В	gbNQ(UKIRT),IRAS,ISO(PHT),gbSubmm/MM(JCMT),
			Spitzer-MIPS, Akari-IRC
334	Chicago	С	gbNQ(VISIR), <mark>IRAS</mark> ,Akari-IRC
360	Carlova	D	IRAS, Akari-IRC
372	Palma	B-C	IRAS, Akari-IRC
423	Diotima	A	gbNQ(VISIR),IRAS,gbSubmm/MM(CSO),Akari-FIS,Akari-IRC
451	Patientia	C	IRAS, Akari-IRC
471	Papagena	В	IRAS, Spitzer-MIPS, Akari-IRC
505	Cava	B	gbNQ(SUBARU,VISIR),Spitzer-MIPS,Akari-FIS,Akari-IRC
511	Davida	В	gbNQ(TIMMI,VISIR),IRAS,Akari-FIS,Akari-IRC
532	Herculina	C	gbNQ(UKIRT),IRAS,gbSubmm/MM(JCMT),ISO(PHT),Akari-IRC
690	vvratislavia	В	
704	Interamnia	В	
116	Berbericia	В	gdNQ(VISIK),IKAS,Akari-IKC

* Asteroids with "Kaasalainen shape models" are in bold face;

* Recent CSO data (D. Dowell, 2008/Feb/02) are still missing.

Thermophysical Modelling (TPM)

- Based on a model code by J. Lagerros, Uppsala
- Energy balance between solar insolation, reflected light and thermal emission: $sS_{\odot}r^{-2} = F_r + F_e$
- Modelling of surface (regolith, craters, roughness, multiple scattering, ...): beaming model with hemispherical segment craters (f: fraction of the surface covered by craters; ρ: r.m.s. of surface slopes)
- Thermal behaviour (1-dim heat conduction, thermal inertia, diurnal temperature variation; wavelength dependent emissivity $\epsilon(\lambda)$)
- Observing and illumination geometry (distances and angles)
- Size (D_{eff}) and shape
- Spin vector and rotational behaviour (+ abs. timing and positioning)
- Geometric albedo p_V
- TPM techniques have been successfully applied to NEOs, MBAs, TNOs, cometary nuclei or planetary satellites

FIG. 1. The shape model of 3 Juno, shown at equatorial viewing/illuminaton geometry, with rotational phases 90° apart.

FIG. 2. Four lightcurves (asterisks) and the corresponding fits (dashed lines) for 3 Juno. The rotational phase is given in degrees, and the brightness in units of relative intensity. The aspect angle of the Earth (measured from the North pole) is given by θ , and that of the Sun by θ_0 . The solar phase angle is given by α .

21 Lutetia

(model by Torppa, Kaasalainen et al. 2003; fly by target of the Rosetta mission)

Thermal Observations & Results for Lutetia

- Based on 38 published observations (IRAS, ESO-TIMMI, IRTF): $D_{eff}=98.8\pm8.0$ km & $p_V=0.21\pm0.03$
- Based on 8 very recent VISIR observations: $D_{eff}=97.9\pm1.7$ km & $p_V=0.22\pm0.01$ (8 observations)
- Based on 2 MIPS observations (Stansberry et al. 2007): $D_{eff}=93.8\pm0.4$ km & $p_V=0.24\pm0.01$ (2 observations)
- Müller, M. et al. 2006: 98.3±5.9 km & p_V=0.208±0.025
- Lutetia is currently classified as quality B: enough thermal data existing, absolute flux predictions are accurate on 5-10%-level

Thermal Observations & Results for the 55 asteroids

- Total number of thermal observations for the 55 asteroids in the database: 2282
 - + 124 VISIR (16): 8.59, 10.49, 12.81, 18.72 μ m (Müller et al.)
 - + 553 Akari-IRC (54): 9, 18 μ m (Hasegawa et al.)
 - + 70 Spitzer-MIPS (~20): 70, 160 μ m (Stansberry et al. 2007)
 - + 495 CSO-SHARCII (14): 350 μ m (Dowell, Sandell, Teyssier)
- 6 asteroids are currently A quality (enough data; accuracy 5%);
 5 have A-B (enough data; accuracy 5-10%);
 22 have B (accuracy 5-10%);
 12 have B-C (accuracy 5-15%);
 6 have "C" (accuracy 10-15%);
 4 have D (rest).
- Quality label based on: robustness of D_{eff} and p_V , quality of shape model and spin-vector solution, availability of thermal data.

team calibration Akari ઝ Hasegawa . ທ Credit:

22

Flux statistics: 55 asteroid calibrators

Asteroids above threshold (only during visibility periods):

tľ	70	100	160	250	350	500	$3000\mu{ m m}$	
max above	100 Jy:	3	3	1	0	0	0	0
max above	10 Jy:	49	29	16	3	3	1	0
max above	1 Jy:	all	all	all	51	31	17	0
max above	0.1 Jy:	all	all	all	all	all	all	3

Statistics:

- min and max flux of one asteroid can change by up to a factor of 10 during visibility regions
- 3 asteroids reach fluxes of above 100 Jy at 70 micron
- 49 asteroids reach fluxes of above 10 Jy at 70 micron
- all 55 asteroids reach fluxes of above 1 Jy at 70 micron
- 16 asteroids are above 10 Jy at 160 micron
- 17 asteroids are above 1 Jy at 500 micron

Flux statistics: 721 asteroids

Asteroids above threshold (only during visibility periods):

tr	70	100	160	250	350	500	$3000\mu{ m m}$	
max above	100 Jy:	4	3	1	0	0	0	0
max above	10 Jy:	151	69	18	4	3	1	0
max above	1 Jy:	679	542	321	168	72	23	0
max above	0.1 Jy:	720	719	719	693	570	383	4

Statistics:

• min and max flux of one asteroid can change by up to a factor of 20 during visibility regions!

- 4 asteroids reach fluxes of above 100 Jy at 70 μ m (1,2,4,324)
- \bullet 151 asteroids reach fluxes of above 10 Jy at 70 μm
- \bullet 679 asteroids reach fluxes of above 1 Jy at 70 μm
- \bullet 18 asteroids are above 10 Jy at 160 μm
- \bullet 23 asteroids are above 1 Jy at 500 μm

SSO Encounters in Herschel Mission

- The 55 asteroid calibrators have 30 encounters with less than 1 deg separation between 2009 and 2013 (during visibility).
- The 55 asteroid calibrators have 9 encounters with less than 1 deg with the planets (M,J,S,U,N).
- The extended asteroid list with 721 asteroids (IRAS 60 μ m flux > 1 Jy): * 2826 encounters within 1 deg * 80 encounters within 3 arcmin * smallest separation (L2-centric): 1.8 arcsec * smallest separation (Herschel-centric): 7.2 arcsec
- The 721 asteroids have 3592 encounters with less than 1 deg with the planets (M,J,S,U,N) (some are within a few arcmin with Jupiter or Saturn!)

Past Applications

- transport of flux calibration from 60 to $100 \,\mu\text{m}$ (IRAS) and from 70 to $160 \,\mu\text{m}$ (Spitzer-MIPS)
- absolute photometric calibration of ISOPHOT in the far-IR
- flux calibration check for ISOSWS and ISOLWS
- validation of relative spectral response functions for the spectrometers onboard ISO
- colour correction and filter leak tests (IRAS, ISO, Spitzer, Akari)
- absolute photometric calibration of Akari-FIS
- validation and improvement of the photometric system for ISOCAM Parallel Mode and ISOPHOT Serendipity Mode
- cross-calibration between instruments, satellites, projects

Expected Herschel Applications

- absolute photometric calibration of PACS/SPIRE
- validation of relative spectral response functions for the PACS spectrometer
- point-source characterisation (PSF measurements): all 55 asteroids are point-like (< 1"), bright (1 ... 500 Jy) and have at certain times slow apparent movements below 10"/hour (9 objects even drop below 1"/hour during visibility windows)
- spatial characterisation through close encounters
- colour correction and filter leak tests (PACS/SPIRE)
- cross-calibration between instruments, satellites, projects
- satellite tracking modes (fastest apparent motion: 12 Victoria with 85.37"/hour)

Products for the 55 asteroids

For planning purposes (via web-page):

- simple flux predictions (modified STM) for all 55 asteroids at 70, 100, 160, 250, 350, 500 and 3000 μ m for the full Herschel mission lifetime (L2-centric frame, time resolution 1 day)
- \bullet confusion noise calculation at 100 and 160 μm along the apparent sky pathes
- apparent motion (L2-centric), close encounters between asteroids and with planets + software tools
- ecliptic, galactic, R.A./Dec. and sun-centric coordinates

For the final calibration (on request):

- * SED prediction for a given epoch (TPM)
- * thermal lightcurve prediction for a given wavelength (> 5 μ m)
- * quality assessment for individual products
- * products are delivered as standard FITS-files or ASCII-tables

References: Asteroids as far-IR/submm calibrators

- Lagerros, J. S. V. 1996, A&A 310, 1011; 1997 A&A 325, 1226; 1998 A&A 332, 1123
- Müller & Lagerros 1998, A&A 338, 340
- Müller & Lagerros 2002, A&A 381, 324
- Müller & Lagerros 2003, ESA SP-481, 157
- Müller et al. 2008, A&A, in preparation
- Müller 2002, M&PS 37, 1919: TPM & observations
- Müller & Blommaert 2004, A&A 418, 347: STM vs. TPM
- Müller et al. 2005, A&A 418, 347: Itokawa, thermal lightcurves
- Müller & Barnes 2007, A&A 467, 737: mm-emission
- Kiss et al. 2008, A&A 478, 605: confusion aspects

Ongoing Projects & Open Points

- Filling and maintance of the observation data base: Analysis of recent observations, search for published data, recalibration of old data, identification of missing and/or critical observational data
- Implementation of Kaasalainen shape models and extensive tests with available observations
- Determination of radiometric solutions for size and albedo
- Documentation of the TPM input parameters
- Proposal writing for mid-IR/submm/mm observations + analysis
- Iterations on the asteroid list, establishment of individual TPMs for the selected calibrators
- Support of Spitzer-MIPS calibration, Akari-IRC/FIS calibration
- Submm (CSO) and mm-projects (ATCA)
- groundbased N-/Q-band observations (VISIR)

Although well studied: Itokawa is not a far-IR calibrator

25143 Itokawa as seen by Hayabusa; Credit: ISAS, JAXA

Yes, some asteroids are useful far-IR calibrators

